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We derive poloidal flow internal loading Green functions for incompressible fluid models of the mantle
consisting either of a single constant viscosity spherical shell or of two adjacent spherical shells having
different viscosities. From the Green function we obtain kernels connecting the surface divergence, the
geoid, and the surface topography fields to the lateral density heterogeneity inferred on the basis of the
application of seismic tomographic imaging techniques, and with these kernels we argue that both the
surface divergence and geoid fields, consisting of harmonic degrees 2-5, may be reasonably fit with only a
factor of 8 viscosity increase at a depth of 1200 km. We point out, however, that the coupling from
poloidal to toroidal flow which is required to understand surface velocity spectra, may allow these
observations to be understood in terms of a viscosity increase at depth which is smaller than required by
nonhydrostatic geoid data in the context of pure poloidal models. Using the observed kinetic energy in
the surface plate motions as a constraint allows us to infer a value for the steady state upper mantle
viscosity of (2.0 +0.5) x 10*! Pa s. We comment on the implication of the difference between this
number and the somewhat lower value (1 x 10*' Pa s) which has been derived on the basis of analyses of
signatures of the glacial isostatic adjustment process.

1. INTRODUCTION

The relationship between the large-scale asphericities of the
observed nonhydrostatic geoid and the seismically inferred
lateral density variations in the earth’s mantle has lately re-
ceived much attention. The method most often employed to
derive the kernels which relate geophysical surface observables
to internal heterogeneities has been the propagator matrix
technique [e.g., Richards and Hager, 1984a; Ricard et al.,
1984]. The analytic Green function method of Parsons and
Daly [1983] allows one to derive, for sufficiently simple
models, the geophysical kernel functions in a very direct way
that does not require consideration of propagator matrices or
Love numbers. In this paper we extend the Green function
method described by Parsons and Daly [1983] and employ
this alternative formulation of the internal loading problem to
three-dimensional, self-gravitating, spherical shells of homoge-
neous (constant viscosity) fluid and also to the case of shells
consisting of two layers having different viscosities.

There are two main reasons why we reexamine the internal
loading problem for fluids with spherically symmetric proper-
ties. First, the Green function technique does have the attrac-
tive feature of allowing one to readily derive explicit, analytic
expressions for the geophysical kernel functions, while the pro-
pagator matrix method as it has been applied delivers only
numerical representations of these kernels. Since increasing
attention is being payed to numerical modeling of convective
flows in three-dimensional spherical geometry [e.g., Baum-
gardner, 1984], the explicit representation of the kernels to be
derived here may be found useful. Second, the kernels that we
obtain for a two-layer model will allow us to conduct an
extensive and independent evaluation of the recent inferences
of mantle viscosity using geoid anomalies by Richards and
Hager [1984a]. In this paper we will present a detailed analy-
sis of both the horizontal divergence of the surface flow and
the geoid, and we will argue that previous conclusions drawn
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on the basis of the geoid data alone, to the effect that a large
viscosity increase at depth in the earth’s mantle is required
[e.g., Hager, 19847, may not be warranted. In this connection
we will argue that the main outstanding issue concerns the
influence of coupling between the poloidal and toroidal com-
ponents of the tectonic plate velocities.

The theoretical kernel functions describing the surface di-
vergence of the fluid flow driven by internal lateral density
variations will be employed to demonstrate that, on the whole,
the observed large-scale plate motions are just those expected
to exist on the basis of the deep density heterogeneity ob-
served using seismic tomographic imaging. Hager and O'Con-
nell [1981] have previously attempted to develop models of
mantle flow which are noteworthy for being the first to in-
clude a realistic, three-dimensional, spherical geometry. In the
formulation of these models, which Hager and O'Connell
[1981] believe to be consistent with a boundary layer formu-
lation of the convection problem, it is imagined that a major
driving mechanism for plate motions is provided by the hori-
zontal density variations in the cold thermal boundary layer
(the lithosphere). In fact, boundary layer analyses of thermal
convection in a fluid [e.g., Turcotte and Oxburgh, 1967; Ro-
berts, 1977] show that the buoyancy forces in the horizontal
thermal boundary layers are negligible in the asymptotic limit
of very large Rayleigh numbers and that the fluid motion is
driven by internal buoyancy forces localized in the ascending
and descending thermal plumes. In addition, it is evident from
the profiles of the horizontal divergence kernels which will be
presented here that horizontal density contrasts in either the
upper or lower thermal boundary layers will produce a van-
ishingly small flow. Finally, the flow models presented by
Hager and O’Connell [1981] remain essentially kinematic
since they include the observed surface plate velocities as a
boundary condition and this requires the existence of an exter-
nally applied shearing stress to drive the plates. In the analysis
to be presented here, on the other hand, we will use the seismi-
cally observed density heterogeneity in the mantle to predict
the surface motions and will employ the observed surface ve-
locities to constrain further the parameters of the earth model.

In the derivation of the kernels describing the nonhydrosta-
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Fig. 1.

Surface plate velocity field constructed from the absolute angular velocity vectors of Minster and Jordan [1978]

in the “hot spot” frame.

tic geoid and the surface horizontal divergence of the mantle
flow, it will be shown that the geoid is sensitive only to the
ratio of the viscosity of one layer to that of an adjoining layer
and that it cannot therefore be used to independently con-
strain the absolute value of the viscosity in the earth’s mantle.
In contrast it will be shown that the observed surface plate
velocities do constrain the absolute viscosity values. We are
thus able for the first time to obtain, by considering both the
geoid and the horizontal divergence simultaneously, a prelimi-
nary estimate of the absolute value of the viscosity by ensuring
that the dynamic balance between buoyant and viscous forces
in the mantle is such as to enable us to match the kinetic
energies of the predicted and observed surface flows. This is a
main contribution of the present paper. The discrepancies be-
tween these absolute viscosity estimates and those obtained
from glacial isostatic adjustment analyses [e.g., Peltier, 1982]
will be shown to have important implications for the issue of
transient mantle rheology [e.g., Peltier, 1985b].

The outline of the paper is as follows. In section 2 we
employ the Minster and Jordan [1978] model of surface plate
velocities to characterize the surface kinematics associated
with mantle convection and to demonstrate anew the equi-
partition of kinetic energy which obtains between the poloidal
and toroidal elements of the flow, a result which was appar-
ently first obtained by Hager and O'Connell [1978]. Section 3
is concerned with a discussion of the correlations between
these two independent scalar characterizations of plate motion
and other geophysical observables, namely, the nonhydrosta-
tic geoid and the seismically observed internal lateral hetero-
geneity of density. In section 4 we describe the new theory
which we have developed to predict the poloidal component
of the surface velocity field and the nonhydrostatic geoid from
the tomographically inferred lateral heterogeneity of density at
depth. The theory is employed to infer the contrast between
the viscosities of the upper and lower mantles which is re-
quired by the data. A discussion of these interpretations is
presented in section 5 where we argue that the effect of the
generation of toroidal flow in the near-surface region of the
mantle will most probably reduce the viscosity contrast in-
ferred by fitting geoid height observations. In this section we
will also present a quantitative discussion of the constraints
imposed by our preliminary absolute viscosity estimates on
the extent to which transient rheology is liable to be impor-
tant in the upper mantle. Our principal conclusions are also
summarized at the end of section 5.

2. PresenT-DAY TECTONIC PLATE MOTIONS

Proceeding from the Wilson-Morgan hypothesis of fixed
hot spots, Minster and Jordan [1978] have obtained an abso-
lute motion model consisting of the present-day rotation rate
vectors for each of the 11 surface plates. A map depicting the
instantaneous, present-day surface plate velocities relative to
the hot spot frame is shown in Figure 1. From these surface
plate velocities we have computed two scalar fields which are
of fundamental importance in considerations of hydrodynamic
process: namely, the horizontal divergence and the radial vor-
ticity. This “two scalar” summary of the surface kinematics is
both necessary and sufficient to describe the type of plate
boundaries which are observed in nature: Transform faults are
regions where radial vorticity is important and ridges and
trenches are regions where horizontal divergence is important
[Peltier, 1985a]. Hager and O’Connell [1978] have previously
calculated two complementary scalars which also describe the
surface plate velocities: namely, the poloidal and toroidal gen-
erating scalars, which are directly related to horizontal diver-
gence and radial vorticity although the latter process related
fields were not computed from them.

For present purposes the north-south component of the sur-
face velocity field, v,(0, ¢), and the west-east component, v,(0,
¢), have been expanded in terms of spherical harmonics up to
degree and order 32. From the harmonic decompositions of
these two fields one may proceed to calculate the spherical
harmonic expansions of the horizontal divergence, Vy - v, and
the radial vorticity, (V x v) - 7 (f is the radial unit vector). The
truncated spherical harmonic expansions of the horizontal di-
vergence and the radial vorticity may be written as

[~

32
Vg-v= 2

1=0m

D,"Y,™(0, ¢) (1a)

=1

and

1

32
Vxv-i=Y ¥

=0 m=—1

Vim0, ¢) (1b)

where Y,"(8, ¢) is the complex surface spherical harmonic.

An alternative scalar representation of the surface kinemat-
ics was obtained by Hager and O 'Connell [1978] by describing
the surface velocity field in terms of poloidal and toroidal
components. In general, any solenoidal vector field v can be
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Fig. 2.

{a) Surface divergence up to degree and order 32. The contour interval is 30 x 1077 rad yr and the individual

contour levels are in units of 107 rad/yr. The dashed contour lines indicate negative divergence. (b) Radial vorticity to
degree and order 32. The contour interval and units are as in Figure 2a. The dashed contour lines indicate negative

vorticity (i.e.. clockwise circulation).

expressed as [ Backus, 1958 Chandrasekhar, 1961]

v=T+S (2a)
where
T=Ay (2b)
1s the toroidal vector field with the defining scalar  and
S=V x A (2¢)

is the poloidal vector field with the defining scalar ¢. Follow-
ing Backus [1958], we employ the vector operator A, which is
defined as

A=rxV (3)

The assumption that the surface velocity field is solenoidal is
justified to the extent that the material may be considered
incompressible (i.e., V- v =0) which is certainly true in the
case of completely rigid surface plates. In the present appli-
cation, ¥(r = a) is the surface velocity field (a is the earth’s
radius). Upon expanding the scalars ¥ and ¢ in terms of
spherical harmonics, it is readily shown that one can express T
as

T=3 T,"AY,™0, ¢) (4)
IL.m

T;™ will be referred to as the toroidal scalar (7™ is the scalar
U™ (r = a)). Similarly, one can express S as

S=3 S§™ x AY,"(0, ¢) (5)
Lm

S;™ will be called the poloidal scalar (S,™ is the scalar d¢,"/dr
(r = a)). A simple relationship exists between these scalars and
the divergence and vorticity scalars defined previously in (1),
namely,

_ab™ 6d)
T 1
and
m = __W" 6b)
YT D (

The harmonic coefficients D, and V™ (see Table C1 in
Appendix C) have been used to synthesize maps of surface
divergence and radial vorticity using (1). The horizontal diver-
gence field is shown in Figure 2a where contours of constant
divergence are plotted. A map of the surface radial vorticity is
presented in Figure 2b. Ridges and trenches show up as ex-
trema of divergence, whereas transform faults like the San
Andreas show up as extrema of vorticity.

It will be useful for purposes of later discussion to consider
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Fig. 3. (a) Degree variance of the poloidal and toroidal compo-

nents of the surface velocity field. (b) Degree variance of the horizon-
tal divergence and radial vorticity fields derived from the surface plate
velocities.

how the kinetic energy of the surface motion is partitioned
among the spherical harmonic components of the surface ve-
locity field. A measure of the total power found in each har-
monic degree is given by the degree variance o, The degree
variances of the poloidal and toroidal components of the ve-
locity field are defined as

1}
o Xpoloidal) = ¥,

m I

S,mS," (7a)
and

1
o Xtoroidal) = Y T"T™*

m=-1

(7b)

It can be shown, using the orthogonality properties of the
vectors f x AY,™ and AY," [e.g., Jackson, 1975], that the mean
kinetic energy of the surface motion is given by

2n 1
X j J vevdcos §dp =Y Ul + 1)[o,*(pol) + a,%(tor)]
4r Jo -1 1

®)

The degree variances for the poloidal and toroidal fields are
shown in Figure 3a. Figure 3a illustrates anew a result first
obtained by Hager and O'Connell [1978]: that the surface
kinematic manifestations of the convection flow in the mantle
exhibit an almost exact equipartition of kinetic energy be-
tween its poloidal and toroidal constituents. In a spherical
shell consisting of chemically uniform fluid with spherically
symmetric properties one expects thermally induced buoyancy
to excite poloidal flow only. As noted by Hager and O’'Connell
[1981], one agency which probably contributes to the gener-
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ation of the toroidal flow required by this equipartition is the
extreme lateral variation of viscosity in the lithosphere. We
also expect that an equally and perhaps more important
mechanism for generating toroidal flow may be the presence
of chemically distinct units (continental versus oceanic crust)
in the near-surface region of the earth [e.g., Peltier, 1985a].

The degree variances of the horizontal divergence and
radial vorticity have also been computed, as in (7a) and (7b),
and are shown in Figure 3b. These power spectra reveal much
more structure than those of the generating scalars shown in
Figure 3a, and it will be observed in particular that the diver-
gence spectrum is characterized by the presence of a well-
defined peak for [ = 4, 5. This peak is clearly associated with
the dominant scale of the plates and therefore of the flow
which sustains their motion [Peltier, 1985a].

3. CORRELATION OF THE SURFACE KINEMATICS
WiTtH OTHER GEODYNAMIC OBSERVABLES

3.1. The Geoid

A quantitative measure of the linear dependence between
two surface fields F(8, ¢) and G(0, ¢) is the degree correlation
coefficient [e.g., O’Connell, 1971] which is a measure of the
spatial correlation between F (0, ¢) and G(6, ¢), where F (0, ¢)
is the function synthesized from all the harmonics correspond-
ing to degree [, that is,

1
F(0, )= Y F"Y"0, ¢)
m=-1
in which F,™ is the complex spherical harmonic coefficient of
F(0, ¢). The degree correlation coefficient p, is the normalized
inner product of F(#, ¢) and G0, ¢), that is,

1
Y, FEG=
md ©)

(o) (E o))

In our analysis the function G(6, ¢) will first be assumed to be
the observed, GEM 10B, nonhydrostatic geoid of Lerch et al.
[1979] (filtered by removal of the dynamically inferred flatten-
ing of Nakiboglu [1982]), and F(0, ¢) will be either of the two
scalars that were derived from the surface plate velocities;
namely, the horizontal divergence (“div”) and the radial vorti-
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Fig. 4. Degree correlations of the horizontal divergence (div),
radial vorticity (curl), trench signal, and ridge signal with the correct-
ed GEM 10B nonhydrostatic geoid. An 80% significance level indi-
cates a 20% probability that the degree correlation is zero.
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city (“curl”). The degree correlations between the corrected
nonhydrostatic geoid and the “div” and “curl” fields are
shown in Figure 4. Inspection of Figure 4 shows that the
greatest correlation between “div” and the geoid occur at de-
grees [ = 4 and 5. Hager and O'Connell [1978] believe that the
I =4 correlation is random and dismiss it accordingly. We
believe instead that such an interpretation ignores the steady
trend to increasingly greater correlations as one goes from
[ =8 to ] =4 and in addition it ignores the dynamic signifi-
cance of the location at | =4, 5 revealed in Figure 3b: The
peak power in the horizontal divergence field occurs at these
two degrees, and we believe this to be representative of the
dominant horizontal length scale of the flow in the upper
mantle. This interpretation is further reinforced by the strong
| = 4 correlation of “div” with upper mantle heterogeneity, as
we will show below.

There may be some significance to the observation that the
trend of the correlation coefficients between “div” and the
geoid is broken at | = 3 since at this degree a peak develops in
the correlation between the “curl” field and the geoid. The
region of strong negative vorticity along the western coast of
North America (the San Andreas fault) and the region of
strong positive vorticity centred over New Guinea (compare
Figure 2a) are well represented in a map of the | = 3 vorticity
field (not shown here). These regions also lie along plate
boundaries where continental crust meets oceanic crust, and
this leads us to speculate that lateral chemistry variations may
be important in determining the / = 3 vorticity field as well as
explaining the degree 3 correlation with the goid.

A more concrete illustration of the spatial correspondence
between the geoid anomaly field and the surface divergence
field for degrees 4-8 is provided in Figures 5a and 5b, which
show the maps synthesized from these harmonic constituents.
Ridges (positive divergence) are generally coincident with
geoid lows, and trenches (negative divergence) are coincident
with geoid highs; this correspondence between ridges/trenches
and geoid lows/highs had previously been noted in the early
pioneering studies of Runcorn [1964, 1967].

We have examined the relationship between the geoid and
ridges and trenches in greater detail by separating the surface
divergence field into two parts: the positive divergence field
(the “ridge signal”) and the negative divergence field (the
“trench signal”). This separation is such that the sum of the
ridge and trench fields equals the original surface divergence
field. The spherical harmonic coefficients of these two fields
were calculated, and their degree variances are plotted in
Figure 6, where one can observe that the ridge signal again
has a peak at degree 4 and the trench signal has a peak at
degree 2. We have also determined the degree correlations of
these two fields with the nonhydrostatic geoid, and the results
are shown in Figure 4. The correlation between the trench
signal and the geoid is excellent for degrees 4-9. Hager [1984]
has shown there to be a good correlation between the actual
geoid and a geoid predicted by a model which includes the
density heterogeneity associated with downgoing slabs only, in
this same band of wave numbers 4 <[ < 9. We observe that
the weak negative correlation at degree 2 between “div” and
the geoid is entirely due to the ridge signal which is also
weakly correlated to the geoid at degree 4. The ridge corre-
lation at degree 4 is important since the peak power in the
ridge spectrum is at the same degree. It is not surprising that
this correlation is weaker than the degree 4 trench correlation
since the lateral density variations associated with buoyant
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upwellings in a thermally convecting fluid are expected to be
of smaller amplitude than those associated with the more in-
tense downwellings particularly if there is some degree of in-
ternal heating in the fluid [e.g.. Jarvis and Peltier, 1982].

The negative sign of the low-degree correlation coefficients
between the surface divergence and the nonhydrostatic geoid
shows that the long-wavelength geoid anomalies must be rep-
resentative of internal buoyancy in the mantle. The geoid
anomalies that are produced by a thermally convecting mantle
will depend on the mutually opposing contributions to the
anomalies provided by the effective lateral density variations
caused by boundary deflections [e.g., Pekeris, 1935; Runcorn,
1967] and those due to the direct effect of the lateral density
variations in the interior. The manner in which these contri-
butions interfere provides important information regarding
the viscosity structure of the mantle. Early speculations by
Runcorn [1967] show him to be aware of the importance of
radially varying viscosity on the geoid signature, and Richards
and Hager [1984a] have in fact shown that an increase of
viscosity with depth allows the geoid contribution delivered
by observed internal density anomalies to dominate the op-
posing contribution provided by surface topography. A
lengthier discussion of the correlation analysis presented in
this section may be found in the work by Forte and Peltier
[1987].

3.2, Seismically Inferred Mantle Heterogeneity

Recent developments in seismology [e.g.. Anderson and
Dziewonski, 1984] have made it possible, in a preliminary way,
to map the earth’s internal lateral heterogeneity at long wave-
length and thus to provide a direct image of the convective
circulation itself. In this section, available models of the earth’s
internal lateral heterogeneity will be examined to determine
what constraints may thereby be placed on the nature of the
thermal convective circulation occurring in the mantle.

3.2.1. Upper mantle. The theory of unresolved multiplet
splitting has been applied in an analysis of fundamental sphe-
roidal mode eigenfrequencies by Masters et al. [1982], who
argued that the heterogeneity responsible for producing the
observed splitting consisted mainly of degree 2 harmonics and
was most likely localized in the depth range 420-670 km (the
transition zone). A map of the degree 2 transition zone density
perturbation, corresponding to the harmonic coefficients of
Masters et al. [1982], is presented in Figure 5d. We found that
a remarkably good correlation exists between the degree 2
heterogeneity of Figure 5d and the degree 2 surface divergence
(shown in Figure 5¢) and moreover that it has the proper sign;
regions of negative divergence correspond to sinking flow and
thus to negative temperature perturbations in the mantle and
hence to positive density perturbations (assuming that the lat-
eral density contrasts are controlled by lateral temperature
variations). We expect that the degree 2 density perturbation
will be produced by both lateral temperature contrasts and
the deflection of the olivine-spinel phase boundary, although
we believe that the latter is the most important contributor
[Forte and Peltier, 1987; Jarvis and Peltier, 1986].

Woodhouse and Dziewonski’s [1984] model M84C which
describes the upper mantle confirms the presence of a degree 2
heterogeneity localized in the transition zone. Model MB4C
was parameterized in terms of spherical harmonic coefficients
as

I
=3 Y omMx)Y"0, §) (10)

I=0 m=—
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where

dm™x) = 3 PumPulx)
k=0

P.(x) is a Legendre polynomial whose argument x is the nor-
malized radius. From (10) it is evident that the heterogeneities
with horizontal length scales less than 2500 km will not be
resolved by this model nor will details with a vertical length
scale less than 200 km. To determine the manner in which
power is distributed among the various harmonic degrees in
the model, the degree variance (determined as in (7)) as a
function of depth has been calculated, and the results are sum-
marized in Figure 7.

Jarvis and Peltier [1986] have suggested a new diagnostic
technique for interpreting the power spectra of lateral hetero-
geneities in a thermally convecting mantle. They studied the
power spectra of the internal lateral heterogeneities produced
in steady, two-dimensional, numerically derived, Boussinesq
convective circulations under various conditions. An impor-
tant result that has emerged from their study is that in the
thermal boundary layers of the convection cells, the power
spectra of the lateral temperature variations are characterized
by strong power at the wave number characteristic of the
dominant horizontal length scale(s) of the flow. This was
found to be true for all Rayleigh numbers that could con-
ceivably correspond to mantle conditions for heated from
below convection cells with various degrees of partial internal
heating. It is on the basis of this spectral analysis that we
expect that the [ =5 spectral peak at lithospheric depths
which is evident in Figure 7 is due to the thermally induced
heterogeneity in the upper thermal boundary layer of the
circulation responsible for driving the plates.

We will next examine the correspondence between the sur-
face plate motions and internal mantle heterogeneity in the
spectral domain by calculating the degree correlations be-
tween the two surface scalars and 8(v,?) for various depths; the
results for model M84C are presented in Figure 8. At degrees
2 and 4 there is a strong negative correlation between surface
divergence and 4(v,?) that appears at about 300 km depth and
extends down to 670 km depth. As discussed above, this nega-
tive correlation is expected if the lateral variations in shear
wave velocity are produced by the thermal effects of upwelling
and downwelling convective plumes.

In Figure 9 we present correlations of the ridge and trench
signals with the upper mantle heterogeneity of model M84C.
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In Figure 9 we observe that the best correlations of the trench
signal occur in the transition zone at degrees 2, 6, and 7; the
negative sign of these correlations is reasonable, as this implies
that positive velocity (and thus density) perturbations are as-
sociated with a negative trench signal (i.e., with downwelling).
A very important observation is the significant correlation of
the ridge signal throughout the entire upper mantle at degrees
4 and 5 which persists into the lower mantle (compare Figure
12). There is also a significant correlation of ridges with veloci-
ty heterogeneity at degrees 2 and 3 in the transition zone. The
negative sign of the ridge correlations is again “correct”
(except at [ = 3), as it implies that negative velocity pertur-
bations are associated with a positive ridge signal (i.e., with
upwelling). The anomalous sign of the [ = 3 ridge correlation
may be due to the effects of poloidal-toroidal coupling [Forte
and Peltier, 1987]. Clearly, at degrees 2, 4, and 5 the divergent
component of the surface velocity field is the expression of
deep, buoyant upwellings in the mantle as would be expected
in a high Rayleigh number convective circulation with only
partial internal heating. The ridges are not then merely passive
features but rather are the surface manifestations of hot,
active, upwelling thermals.

3.2.2. Lower mantle. A smoothed representation of the
lateral P wave velocity heterogeneities in the lower mantle has
been obtained by Dziewonski [1984]. We will consider his
model L02.45 for which the velocity heterogeneities were rep-
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Fig. 7. Degree variance of the squared shear velocity heterogen-

eity as a function of depth for the upper mantle model M84C of
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resented in terms of a spherical harmonic expansion, as in
equation (10), namely,

3 i
ov,) = E,O ;l om™(x)Y,"(0, ¢) (11)

where

3
om™(x) = Y. CynPux)
k=0
The degree variance of (v,) as a function of depth has been
calculated for model L02.45, and the results are shown in
Figure 10.

If it is assumed that a whole mantle convective circulation
exists, then the upwelling and downwelling thermal plumes
must penetrate the 670-km seismic discontinuity, and it should
thus be reasonable to expect that the amplitude of the seismic
velocity heterogeneities at the interface separating the upper
and lower mantles should be the same in each mantle layer
and thus that the power spectrum of d(v,) at 670 km should
agree closely with the power spectrum of é(v,?) at 670 km. An
analysis of the correlation between the ridge signal and 4(v,)
presented below will show that this assumption is not unrea-
sonable. One may directly compare the lateral heterogeneity
of the upper mantle model with that of the lower mantle
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model by translating d(v,) into 8(v,?); this is readily done if
one assumes that the velocity perturbations are caused solely
by lateral temperature variations; with this assumption we
write

d(v,?) = C d(v,) (12)

where

_ 20(00,/0T),,,,

(0v,/0T),

and the subscripts p, m indicate differentiation holding pres-
sure and chemical composition (and/or phase) constant, re-
spectively. The proportionality constant C in (12) may be
evaluated from data obtained in laboratory measurements on
minerals representative of the mantle; for spinel (MgAl,O,)
the temperature derivatives of v, and v, given by Anderson et
al. [1968] yield a C value of 8.0 km/s. Using (12) we have
converted the power spectrum of (v,) at 670 km depth into an
equivalent spectrum of §(v,?), thus enabling a comparison with
the &(v,?) spectrum of model M84C at this depth. We found
that the power at | =4 matched well, but the powers at all
other degrees matched very poorly. Woodhouse and D:zie-
wonski [1984] and Dziewonski [1984] point out that their data
sets poorly resolve the mantle heterogeneity at this depth. As a
result, we next considered the power spectrum of §(v,?) at the
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shallower depth of 650 km and the power spectrum of d(v,) at
700 km depth. The results of comparing the d(v,) field with the
8(v,?) field are summarized in Table 1. From Table 1 one can
see that the power of the even degree harmonics is in good
agreement, while the power at the odd degrees in model
L02.45 is substantially greater than that of model M84C, and
this is not surprising since the odd harmonics in the upper
mantle model are poorly resolved at these depths [ Woodhouse
and Dziewonski, 1984]. We, of course, do not imply by the use
of the temperature derivatives for spinel that this mineral is a
constituent of the lower mantle, but the results obtained here
indicate that these derivatives may provide a reasonable esti-
mate of the actual values.

The power spectra of the upper and lower mantle models
match quite well when interpreted in terms of lateral temper-
ature variations, and this is somewhat unexpected since part
of the velocity heterogeneity at 670 km depth should also
include the contribution provided by the deformed spinel-
mixed oxides phase change boundary. These results would
seem to suggest that the phase boundary deflection is not
significant and consequently that the Clapeyron slope of this
phase transformation might be rather small.

In Figure 10 we see that the power spectrum of d(v,) shows
a strong | = 2 peak at the base of the lower mantle, while at
shallower depths the spectrum becomes flat with significantly
less power than the peak at 2800 km depth. Following Jarvis
and Peltier [1986], we may interpret this variation of lateral
heterogeneity with depth in the context of a thermal convec-
tive circulation in the mantle: therefore the strong peak at the
fundamental wave number (I = 2) in a depth interval of about
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100-200 km next to the core-mantle boundary (i.e., within the
seismic D" layer) indicates the existence of a well-defined ther-
mal boundary layer which would be associated with a partly
heated from below, high Rayleigh number convective circu-
lation whose dominant scale is of degree 2.

It is possible to investigate the temperature variations in D"
by converting &(v,) in model L0245 into equivalent lateral
temperature variations 67. If we again assume that 6(0‘,} is
only produced by temperature variations, then we may write

8T = (0v,/0T), .~ 8(v,) (13)

Stacey and Loper [1983] have derived a thermodynamic ex-
pression for (6K,/@T), which they used to calculate a év, /0T
value of —0.0899 m s~! K~' in D". Dziewonski [1984] has
provided a map of d(v,) at the core-mantle boundary syn-
thesized from the harmonic coefficients of model L02.45, and
in it one observes that the amplitude of the d(v,) field is about
100 m/s, which translates (using equation (13)) into an ampli-
tude of 1100°K in the equivalent 6T field. This amplitude is
about the same as the temperature jump across D" which is
estimated to be 840°K + 30% [Stacey and Loper, 1983], and
this is precisely what is expected in a high Rayleigh number
convective circulation in which the temperature contrast of
the plumes relative to the adiabatic core of the convection cell
is about the same as the temperature jump across the thermal
boundary layer [e.g., Jarvis and Peltier, 1982]. Model L02.45
is a low-pass-filtered image of the lateral heterogeneity in the
lower mantle [ Dziewonski, 1984]; however, we are fairly confi-
dent that our inference of the amplitude of the lateral temper-
ature variations in D" is valid, since according to Jarvis and
Peltier [1986] almost all the power in the 6T field is confined
to the fundamental wave number in the thermal boundary
layer which in our case is | = 2.

The degree correlation coefficients between the “div” and
“curl” fields and the &(v,) field of model L0245 have been
calculated for various depths, and the results are shown in
Figure 11, wherein one sees that unlike the degree correlations
for the upper mantle heterogeneities, there are no sharp corre-
lations in the lower mantle. The degree correlations of the
separate ridge and trench signals with d(v,) are presented in
Figure 12. The most notable correlation is that of the degree 3
component of the ridge signal which persists from 1200 km
depth down to the core-mantle boundary; above 1200 km the
sign of the degree 3 correlation “flips,” and perhaps this re-
versal is due to a coupling to toroidal flow as suggested by the
degree 3 vorticity correlations shown in Figure 11. An impor-
tant result is provided by the ridge correlations in the depth
range 700-900 km. (compare Figure 12) which are almost
identical to the ridge correlations in the transition zone (com-
pare Figure 9) since this suggests that upwelling thermal
plumes do continue across the 670-km “boundary.”

TABLE 1. Matching the Degree Variances of the Upper and Lower
Mantle Models at Spinel-Mixed Oxides Phase Boundary

Model M84C (at z = 650 km) Model L02.45 (at z = 700 km)

Degree dv,), 8(v,), Equivalent d(v,?),
! (m/s)* x 10° m/s (m/s)? x 10°
=2 1.56 18.8 1.50
1=3 0.11 17.7 1.42
I=4 1.04 12.6 1.01
=35 0.22 12.7 1.02
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4. PREDICTING SURFACE MOTIONS, THE GEOID,
AND SURFACE TOPOGRAPHY FROM SEISMICALLY
INFERRED MANTLE HETEROGENEITY
In this section we will derive the theoretical results which
are required to connect the newly observed lateral heterogen-
eity of the mantle to surface plate kinematics and the structure
of the gravitational field. Our theoretical models of these con-
nections will be described in order of increasing complexity.

4.1. Homogeneous (Constant Viscosity) Mantle Green
Function

If one applies a first-order perturbation theory to the hy-
drodynamic equations expressing the principles of mass con-
servation and momentum conservation, then the following
equations are obtained which are accurate to first order:

V.ou=0 (14)

and

Po81 + P18 — VP, + nAu =10 (15)

The quantities with subscript 1 are perturbations to the hy-
drostatic reference state which is denoted by the subscript 0.
In arriving at (14) it has been assumed that the density distri-
bution of the reference state, p,, is constant (i.e., the Boussin-
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esq approximation has been made), while in (15) the inertial

force has been ignored since the mantle is characterized by an

essentially infinite Prandtl number. The term p,g,, which de-

scribes the effect of self-gravitation, was ignored in the analysis

of Parsons and Daly [1983]. The acceleration g is given by
9o

Bo=—_T
"

(16)

where g, is assumed constant since it is known that the accel-
eration due to gravity is approximately constant in the earth’s
mantle. We will adopt the sign convention that the acceler-
ation perturbation, g, is expressed as a positive gradient:

g, = Vo,

and therefore that ¢, the perturbed gravitational potential,
satisfies

(17)

Ap, = —4nG p, (18)

Equation (14) asserts that u is a solenoidal vector field
which may thus be represented as [ Backus, 1958]

u=Vx Ap+ Ag (19)

where the operator A was defined in (3) and p and g are the
poloidal and toroidal scalars, respectively. Throughout this
section we will make liberal use of the mathematical identities
employed by Backus [1958].
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If one substitutes (16), (17), and (19) into (15) and applies the must solve the equation
operator Vx to the resulting equation the following result, is 3 mr "
obtained: D* p(r. 1) = 8(r — 1) (25)

£190
r

A +nVxAAg—nAA?p =0

(20)
If one applies the operator

1
— |dS AY"
4n | !

to (20), the following further result is obtained:

!
= JY;’*AZ %‘—’ ds = % .[mep ds 21)

The operator A* = A - A is characterized by the property that

A" = — [l + )Y (22)

where Y,™(#, ¢) is the complex spherical harmonic function
which is normalized such that

- J Y,"(0, ¢)Y,"X(0, ¢) dS = 5, 6, (23)
4 |,

If one now expands the scalars p, and p in terms of spherical
harmonics and applies the results (22) and (23), we obtain
from (21) the following fundamental equation:

9o (py),"(r)
n r

D,*p,"(r) = (24)
where p,"(r) and (p,),"(r) are the radially varying spherical
harmonic coefficients of the scalars p and p,, respectively. D,?
is the transformed biharmonic operator A?, and the operator
D, is defined as

2 2d II+1)

B,
Tt r dr r?

Equation (24) shows that when the dynamic viscosity n is
assumed constant, then lateral density variations will drive
only a poloidal flow field.

To determine the poloidal flow Green function p,"(r, r’), one

where &(r) is the Dirac delta function and r' is the depth at
which the é function load is applied. The function satisfying
(25) will be completely determined after applying the appro-
priate boundary conditions at the earth’s surface (r = a) and at
the core-mantle boundary (r = b). Once the Green function
has been found, then the poloidal scalar may be obtained from

") = % J M p,"(r, ¥') dr' (26)

"o .

We have shown in the correlation analysis of section 3 that
the tectonic plates should be regarded as participating in the
large-scale flow in the mantle, and therefore if we are to model
the surface plate motions, application of a free slip boundary
condition at the earth’s surface is suggested. We will also
assume a free slip boundary condition at the core-mantle
boundary (CMB). The derivation of the Green function which
satisfies (25) and the stated boundary conditions is described
in Appendix A.

In attempting to predict the surface plate motions using the
poloidal flow scalar of (26) one is naturally confronted with
the difficulty of explaining the toroidal flow which is observed
in the surface velocity field. This difficulty has led some re-
searchers [e.g., Ricard et al, 1984] to assert that it is not
possible to describe surface plate kinematics with a spherically
symmetric viscosity model. We note instead that the good
correlation between the surface divergence and the seismically
inferred lateral heterogeneity in the upper mantle at degrees 2
and 4 suggests to us that there may be an almost linear re-
lationship between these two fields at | = 2 and | = 4 and that
it should therefore be possible to model the surface divergence,
which is directly determined from the poloidal scalar, with a
spherically symmetric viscosity model. Since we assume that
toroidal flow is mostly generated in the near-surface region of
the earth, then it is reasonable, as a first approximation, to
assume that internal density heterogeneity below the litho-
sphere excites mostly a poloidal flow, thus maintaining the
validity of (24). In Appendix A we derive the expression for the
dimensionless kernel S,(r'), which relates the spherical harmon-
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TABLE 2. Degree Correlations Between Predicted Surface
Divergence for a Homogeneous Mantle and Observed
Surface Divergence

Degree Correlation Significance

1 Coefficient Level o
=2 0.80 90% < o < 95%
I=3 0.30 o < B0%
=4 0.68 95% < o < 98%
t=5 0.28 o < 80%

ic components of the horizontal divergence field at r = a to
the lateral variations of density in a constant viscosity mantle
as

{VH " u)lm{r = a) = @
"

_[ S(r')py),"(r') dr’ 27
b

In Figure 13a we present profiles of this kernel for several
values of spherical harmonic degree [.

We have used (27) to predict the surface divergence field
driven by the seismically inferred lateral heterogeneities in the
mantle. The density perturbations (p,),"(r) were obtained from
models M84C of Woodhouse and Dziewonski [1984] and
1.02.45 of Dziewonski [1984] assuming that the lateral vari-
ations in seismic wave speeds are caused solely by lateral tem-
perature variations, and we have again employed the temper-
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ature derivatives for spinel given by Anderson et al. [1968].
The assumption of pure lateral temperature variations is not
entirely valid in the transition zone where part of the lateral
heterogeneity is due to the deflected olivine-spinel phase
boundary. The degree correlations between the predicted and
observed divergence fields are given in Table 2, where one
observes that very good correlations are obtained at degrees 2
and 4, as expected.

A further illustration of the flexibility offered by the Green
function method is provided by the ease with which we will
derive the geoid kernels. It will be very useful to consider first
the degree correlations of the nonhydrostatic geoid with the
seismically inferred mantle heterogeneities since one may then
obtain a rough idea of the shape required of the kernel func-
tions which describe the geoid. In Figures 14 and 15 we show
these degree correlations for both the upper and lower man-
tles. Figures 14 and 15 suggest that the kernels describing the
degree 2 and 3 geoid should have maximum (negative) ampli-
tudes in the lower mantle and negligible amplitudes in the
upper mantle, while for | = 4 the geoid kernels should gener-
ally have maximum (positive) amplitudes in the midmantle
(except for [ = 5) and negligible amplitudes elsewhere.

The solution of Poisson’s equation (equation (18)) is given
by the usual volume integral,

pl(r')
, Ir =]

or) =G

(28)
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When the following useful expansion [e.g., Jackson, 1975]
1

Ir —r|

!

I 1 r< g "
X —2!+1—Y:"'(9, PV, ¢)
m= =1

-
i+1
=0 - r.

where r. = min (|r, [r']), r. = max (|r|, |[r'|), is inserted into (28),
the following expression is obtained for the harmonic coef-
ficients of the interior gravitational potential generated by the
internal density heterogeneities in the mantle:

4nG [, T ! o
(Usnd™(r) = = (py),"(r) dr (29)
b

21+ 1 o

where b < r < a. Application of result (28) to the effective den-
sity heterogeneity produced by the deflected surface boundary
at r = a leads to the following expression for the harmonic
coefficients of the internal potential generated by the deformed
surface:

" 4nGa r\! m
[Ua)l [?’] = ﬁ (Po = pw(;) 6“! (30)
where da,™ are the harmonic coefficients of the deformed sur-
face, da(f, ¢), at r = a, and we have assumed that the mantle
of density p, is overlain by ocean with density p,. Equation
(30) is accurate to first order in da. Similarly, one can show
that the interior gravitational potential produced by the de-
flected core-mantle boundary is given by

4nGbh AN
(U)™r) = —— (p, — po)(;) 3b, (31)

20+ 1
where p, is the density of the outer core and the harmonic
coefficients describing the deflection field, éb(0, ¢), of the core-
mantle boundary are éb,". If we ignore the (probably signifi-
cant) contribution to the earth’s gravitational potential pro-
vided by the deflected phase change boundaries then the total
perturbed potential ¢,(r) is given by

(@ h"™(r) = (Ui ") + (U),"(r) + (Up),"(r)

The deflection da(f, ¢) of the surface r = a from its reference
position is determined from the fact that the surface traction
must be continuous across this material interface; to first
order this implies the continuity of the g,, stress tensor com-
ponent at the bounding surface and the following first-order
accurate expression may be derived:

(32)

Pr=a) 2y du, (33)

da(l, @) = —
2 dolPo — Pw)  Golpo — py) Or [=,

where P, is the perturbed (nonhydrostatic) pressure and u, =

- u. An expression identical to (33) applies to the deflected
core-mantle boundary except that p,, is replaced by p_ and all
quantities are evaluated at r = b. The nonhydrostatic pressure
may be determined from the  component of the momentum
equation (15) where it is evident that the self-gravitation term
pog, will have an effect. The details of the derivation for the
self-gravitating geoid kernels are presented in Appendix A,
where it is shown that

3 a ;
(Ge)™ = mJ; Gr)p),"(r) dr (34

where (Ge),™ is the harmonic coefficient of the nonhydrostatic
geoid field, p is the average density of the earth, and G,(r') is
the nondimensional geoid kernel. From the expression for the
geoid kernel given in Appendix A it is clear that in contrast to
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TABLE 3. Degree Correlations Between Predicted Geoid for a
Homogeneous Mantle and Observed Nonhydrostatic Geoid
Degree Correlation Significance
I Coefficient Level o
2 —0.01 o < 80%
3 0.53 o < 80%
=4 —0.51 80% < a < 90%
=5 0.60 o= 95%

the surface divergence field, the geoid anomalies produced by
lateral density variations in a homogeneous fluid mantle are
independent of the mantle’s viscosity.

In Figure 13b we show profiles of the kernel G,(r) for
various degrees I. The kernels for [ = 2 and ! = 3 have peaks
in the midmantle, and consequently, according to our pre-
vious analysis of the correlations shown in Figures 14 and 15,
we do not expect a good correlation between the geoid predic-
ted by (34) and the observed geoid; the degree correlations
between these two fields have been calculated and are present-
ed in Table 3. The correlations at | = 2 and 3 are poor, as
expected, and the correlation at | =4 has the “wrong” sign
since the corresponding kernel does not have the required
positive amplitude. The best correlation is at [ = 5 since the
corresponding kernel has the negative peak in the midmantle
required by the correlations in Figure 14.

The derivation of the kernels for the surface topography in
a self-gravitating mantle is relatively straightforward, and the
details of the derivation will be found in Appendix A, where it
is shown that the spherical harmonic coefficients of the surface
topography da,™ are given by

dar = [ moware o9
(o — P )b
where Ti(+’) is the dimensionless topography kernel. Profiles of

the kernel Ty(r') for several degrees | are presented in Figure
13c.

4.2.

Microrheological considerations [e.g., Ranalli and Fischer,
1984] suggest that the effective Newtonian viscosity of the
mantle should increase with depth with the largest increase
probably occurring within the lower mantle. The simplest
earth model which allows one to investigate the effects of
radially varying viscosity is one in which the earth’s mantle is
divided into two layers having different viscosities. In this sec-
tion we will derive the Green function for a two-layer mantle
and then proceed to a detailed investigation of the surface
divergence and geoid anomalies produced by the seismically
inferred lateral density variations. As before, we will assume
that a whole mantle convective flow exists, and consequently,
we do not consider the possibility of layered convection which
would imply that the depth of the viscosity jump also coin-
cided with a chemical discontinuity.

In the derivation of the two-layer poloidal flow Green func-
tion it is assumed that within each layer the viscosity is con-
stant and the Boussinesq field equations (14) and (15) are also
applied to each layer. It is clear therefore that (24) will apply,
although the dynamic viscosity # will have a different value in
each layer. The delta function loads which excite the response
are placed in both the upper and lower layers and thus the
problem may be treated in two parts: case 1, to find the
poloidal flow Green function for a delta function load in the

Inhomogeneous ( Two-Layer) Mantle Green Function
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lower layer, and case 2, to find the Green function for a delta
function load in the upper layer. In each case the mantle
consists of three distinct regions which are schematically
shown and numbered, for future reference, in Figure 16. The
Green function for case 1 will satisfy the equations

D, Z(PL):m(ra r)=0
D (p)"(r, 7)) = 8(r — 1)

where r = d is the radius at which the viscosity jump occurs.
The Green function for case 2 will satisfy the equations

D*(p,),"(r, 1') = &(r — 1)
D*(p,)"(r,r') =0

d<r<a
(36)
b<r<d

d<r<a

(37)
b<r<d
The Green function satisfying equations (36) and (37) will sat-
isfy free slip (i.e., zero tangential stress) boundary conditions at
both r = a (the surface) and r = b (the CMB). One may readily
verify that the poloidal flow scalar which satisfies (24) is given
by the expression

Py = L2 f ©O) (37, vy dr
’h.. d r’

'l ’
+@j @) ‘]’m{r)lp,);"‘[r, Fydr (38)
He Jo r

where (p,),"(r, ¥") and (p,),"(r, r') are the Green functions satis-
fying equations (37) and (36) and », and », are the viscosities
of the upper and lower layers, respectively. Referring to the
numbering scheme for the layers in Figure 16 and using (38),
we write

) =2 f CX (o )i, ) dr
’?I‘ r r
I 9o J’ ____(P;];:n(r’) (pa),"(r, ") dr'
nu d r

d myr
gy J —(p‘}’, ) (P)"r, ) dr' d<r<a  (39a)
He Jv F

and

p"(r) = i—o J. LA (pe),"(r, ') dr’
2

-
Y ¥

d my
5 J CITD 4 yimir, )
’h_, r r

30 J @) ey dr b<r<d  (39b)
b

;
He

where (ps),"(r, r') is the Green function (p,),"(r, r') for the
region d <r </ (layer 5), (p,),"(r, r) is the Green function
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@ P:py,T=T, ®
depin of
'=“{viscosiry |um0) red
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PP =T ®
-------------------- r=r' [B-function load]
@ r=b (CMB) r=b

Fig. 16. Schematic diagram of the geometry for the two-layer Green
function.
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(p,),"(r, ') for the region r' < r < a (layer 4), (p,),"(r, r') is the
Green [unction (p.),™(r, #') for the region d <r < a (layer 3),
and so on. In Appendix B we present the details of the deri-
vation of the Green functions satis{ying (36), (37), the free slip
boundary conditions at r = a, b, and the appropriate match-
ing conditions at r = 1" and r = 4.

It is a straightforward task to obtain the surface divergence
kernel for the two-layer mantle using the poloidal scalar given
in (39). In Appendix B we describe the details of the derivation
for the divergence kernel where we show that

(Vg -u),"(r=0a) = %P‘ '[ Sqr's np/m, dpy) ") dr’ (40)
u Jb

where here we emphasize that the behavior of the kernel §,
also depends on the ratio of the viscosities of the two layers
and the depth of the boundary between them. The amplitude
of the surface divergence also depends on #, and thus the
surface divergence field (or, equivalently, the surface poloidal
scalar in equation (6a)) will depend on the absolute value of
the viscosity in each layer. The nonhydrostatic geoid (see Ap-
pendix B), however, depends only on the ratio of the vis-
cosities of the two layers:

(Ge),™ =

@+ J; Gr's nu/me dp,)"(r) dr' - (41)

where G, is the nondimensional, self-gravitating geoid kernel.

In our formulation of the two-layer model the radius at
which the viscosity change occurs, r = d, has been presented
as a variable parameter. In past studies of the internal loading
problem the boundary between the two layers is almost
always placed at the 670-km seismic discontinuity. If one in-
terprets the seismic discontinuity as a manifestation of the
spinel-mixed oxides phase change, then microphysical con-
siderations of possible mantle creep mechanisms suggest that
an increase in the activation enthalpy produced by the phase
change will almost certainly lead to a viscosity increase at 670
km. These microphysical theories of the mantle creep mecha-
nism also suggest that within the lower mantle the viscosity
may increase by as much as 2 orders of magnitude [e.g., Ra-
nalli and Fischer, 1984], while the maximum viscosity increase
at 670 km is expected to be only an order of magnitude [e.g.,
Sammis et al., 1977]. It does not seem physically reasonable
therefore to insist that the entire radial variation of viscosity
across the earth’s mantle be approximated by a viscosity in-
crease at 670 km depth in a simple two-layer model. We
expect instead that a more reasonable alternative would be to
place the depth at which the viscosity changes below 670 km
(i.e., within the lower mantle) since this may be where the
greatest increases in viscosity is most liable to occur. It is for
these reasons that we will experiment with several values of
the parameter d in (40) and (41).

In Figures 17a-17c we present several profiles of the surface
divergence kernel S, for the case d = 5701 km (ie., depth
z = 670 km), and in Figures 17d-17f we show profiles of the
geoid kernel G, for the same d value. A comparison of the
two-layer geoid kernels with those for the homogeneous
mantle (Figure 13b) shows a very marked change in behavior.
Increasing the viscosity of the lower layer produces geoid ker-
nels which are increasingly positive since the deflection of the
surface boundary, r = a, becomes diminished in amplitude,
allowing the effect of the internal density inhomogeneities to
dominate the geoid, while in a homogeneous mantle the con-
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Kernels for an incompressible, two-layer mantle with free slip conditions at the surface and CMB and viscosity

jump at z = 670 km. (a){c) Horizontal divergence kernels. (d)}-{f) Geoid kernels for a self-gravitating mantle.

tribution to the geoid from the surface topography always
dominates that of the internal mass anomalies, thus producing
negative geoid kernels [e.g., Hager, 1984]. In Figure 18 we
present profiles of the surface divergence and geoid kernels for
the case d = 5171 km (z = 1200 km) where again one may
observe that the shape of the divergence kernels is very similar
to those of Figures 13b or 17. Clearly, the spatial correlation
of the geoids predicted from the two-layer model with the
observed nonhydrostatic geoid will therefore be very sensitive
to changes in the values of d and of 5, /5, while the spatial
correlation of the predicted surface divergence with the ob-
served surface divergence will not be as sensitive. We do
expect, however, that the amplitude of the predicted surface
divergence will be quite sensitive to changes in the values d, n,,
and #,.

We now proceed to a detailed investigation of the degree
correlations of the predicted divergence and geoid fields with
the corresponding observed fields, and we will also compare
the power spectra of the predicted ficlds with the observed
fields. It is our intention to thereby unify the description of the
surface plate kinematics (as represented by the surface diver-
gence scalar) with the description of the nonhydrostatic geoid
and thus to arrive at a two-layered earth model which best
describes both fields simultaneously. In using (40) and (41) to
obtain the predicted surface fields we again use models M84C
[Woodhouse and Dziewonski, 1984] and L02.45 [Dziewonski,
1984] to deliver the required lateral variations of density in
the earth’s mantle.

In Figure 19 we show the degree correlations of the predic-
ted and observed surface divergence fields, and one may see

that the correlations are not very sensitive to either », /5, or d,
as expected. The degree correlations of the predicted geoid
with the observed nonhydrostatic geoid and their dependence
on #, /n, and d are shown in Figure 20, where one sees that, as
expected the spatial correlations are indeed very sensitive to
viscosity structure. For the case z = 670 km (Figure 204) the
best correlations (significance level >90%) for degrees 2 and 3
are for 16 < n,/n, < 18, while the correlation at degree 4 is
very poor in this range of viscosity ratios and the correlation
at degree 5 has the “wrong” sign. A more successful fit, for all
degrees, is obtained at z = 1200 km (Figure 20d) since for
1./, = 8 the correlation coefficients for [ = 2, 3, 4, and 5 are
all positive and moreover the correlations are more than 90%
significant for [ = 2, 3, and 5. The correlation at degree 4 is
also much better than for the case z = 670 km.

The amplitude of the surface divergence depends not only
on #, /i, but also on 5, (see equation (40)), and thus to show
the complete dependence of the degree variance of the predic-
ted divergence field on the viscosity in a single diagram, we
have plotted, in Figure 21, a quantity we call log, (o) versus
f./M,, Where

a{n./m. ) (42)

logq (o) = logw(a G/ =1)
ML e =

where a(n,/n,) is the degree variance of the predicted surface
divergence for a given value of n, /n, and a/(n./n, = 1) is the
degree variance of the predicted field for a uniform (constant
viscosity) mantle, and consequently, the ratio ¢; defined in
(42) is independent of #, since in (40), 1, appears as a simple
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factor. The observational constraints are introduced by con-
sidering the following quantity:

a,(observed)) 3)

lo a,) = lo

g10 (70) gw(ﬂ'.r('?u”?.. 1)
where o, (observed) is the degree variance of the total observed
surface kinetic energy (i.e., poloidal + toroidal; see equation
(8)). We include the energy of the toroidal field since we as-
sumed that it is produced by a flux of energy out of the

poloidal field. The quantity o, defined in (43) is directly pro-
portional to #, and is independent of #, /i,. In Figure 22 the
horizontal dashed lines are plots of log,, (o,*) for n,* =1
x 102! Pa s. It is clear therefore that once an appropriate
value of 5, /4, has been chosen, then a value for 5, may be
determined by equating log,, (¢g) with log,, (g,) (ie., by
matching the predicted and observed kinetic energies) and in
Figure 21 this amounts to measuring, for a particular degree [,
the “distance™ (as measured along the ordinate axis) of a par-
ticular point on a log,, (gg) curve from the log,, (g,*) line; if

10

— J—E —
4 4 4
=z SO B &
© 5 5 5
= B - b=
:;(I 20 3 :: 3 3
&
€ -20- L "
8
- 60 3 B
5 la} 2=670 KM b) 2:=BO0OKM (c) z=1000KM
-1
10
L — =2 | —e2 [
- 4 4 — 4
g B0 -
o 5 5 <5
E 20 = : K
3 3 3 —— 3 —
- | —————
& -20f - -
o
o
O _gof L I_
(d) 2=1200 KM (e) 2=1400 KM (f) 2=1600 KM
-0 1 Il I 1 1 1 L 1 ! 1 L 1 I} i 1 1 1 1 I L I ! | 1 1 1
1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
W/ MMy RAN
Fig. 19. Degree correlations of observed surface divergence field with the predicted surface divergence field, for a

two-layer mantle, as a function of viscosity contrast and depth of viscosity jump.
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we call this “distance” log,, d, then the value of the upper
mantle viscosity is 7, =d x n,* =d x 10*' Pa s. Since the
degree correlations of the predicted surface divergence (Figure
19) are rather insensitive to the value of #, /n,, the appropriate
viscosity ratio will be obtained by considering the predicted
geoid field.

In Figure 22 we plot the variation of the degree variances of
the predicted geoid field and the horizontal dashed lines are
the degree variances of the observed nonhydrostatic (GEM
10B) geoid.

The choice of the best viscosity ratio #,/n, and boundary
depth d will very much depend on the criterion employed to

determine the “best fit.” One approach is to choose the vis-
cosity ratio that maximizes the degree correlations. In this
approach the optimum viscosity ratio will also vary according
the particular degree [ that is considered, and thus it is very
possible to arrive at apparently conflicting conclusions, as
have Richards and Hager [1984b], who achieve a good fit for
their slab geoid (4 <[ < 9) with viscosity ratios greater than
30, while a best fit for their residual geoid (I = 2, 3) is obtained
with a viscosity increase of 10. The different harmonic compo-
nents of the predicted geoid will be most sensitive to vis-
cosities at different depths in the mantle, and thus a good fit to
the observed geoid at all degrees [ clearly requires a more
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Fig. 21. Degree variances of the predicted surface divergence field, for a two-layer mantle, as measured by log (o)

(compare equation (42)) as a function of viscosity contrast and depth of viscosity jump. The dashed horizontal lines are the
degree variances of the observed surface divergence field, as measured by log (g,)(compare equation (43)).
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complicated radial variation in viscosity than is possible in a
simple two-layer model.

In the case of a two-layer model a reasonable compromise
is achieved by fitting the total predicted geoid synthesized
from all available harmonics (i.e, from [ = 2 to | = 5) to the
corresponding observed nonhydrostatic geoid. It is possible to
introduce an objective measure of “fit” which incorporates the
information contained in both the degree variances and degree
correlations by defining a root mean square (rms) error ., as

2n 1
O ™ = j J‘ [G(0, ) — G0, ¢)]* d cos 0 do (44)
an Jo )

where G (0, ¢) is the predicted geoid field and G4(6, ¢) is the
observed nonhydrostatic geoid. If both geoid fields are ex-
panded in terms of spherical harmonics, then one may readily
show, from (44), that

6rm52 = Z (U',,J:Z + [GD}IZ = 29;("',]‘;(“0):
I

X0’

1

where (o), is the degree variance (power) of the predicted
geoid, (o), is the degree variance of the observed geoid, p, is
the degree correlation between predicted and observed geoid,
and 9, is the rms error for each degree. In Table 4 we summa-
rize the rms errors obtained when the boundary separating
upper and lower layers is at z =670 km and #,/n, = 18

(45)

TABLE 4. The rms Errors Between Predicted and Observed
Nonhydrostatic Geoid for the Case z = 670 km

(which maximizes the degree correlations). In Table 5 we pres-
ent the rms errors when z = 1200 km and n, /, = 8 (maxi-
mum degree correlations). A comparison of Tables 4 and 5
reveals that the best fit to the | = 2 and 3 geoid is obtained for
the case z = 670 km and 5, /y, = 18, while the best fit to the
A =4 and 5 geoid is obtained for the case z = 1200 km and
n./m, = 8. A slightly better fit to the observed geoid for
2 <1 <5 is achieved for the case z = 1200 km and 5./, = 8
and this is entirely due to the much improved fits at [ = 4 and
5 compared to the case z = 670 km. The global fits for the
cases z = 670 km and z = 1200 km are essentially equivalent,
and this demonstrates that a trade-off exists between the value
of nn,./n, and the depth of the viscosity jump.

Once the optimum viscosity ratio 5 /5, has been selected,
one may (on the basis of the degree variances of the predicted
surface divergence) determine a value of 5, according to the
procedure described above, and it is thus possible to estimate
the absolute magnitude of the viscosities in the upper and
lower layers. Since the best degree correlations between pre-
dicted and observed surface divergence are obtained at [ =2
and 4, we again try to match the predicted and observed
kinetic energies at these degrees to determine the upper
mantle viscosity. For the case z = 670 km, #,/y, = 18, the
value of 5, determined from [ =2 is 1.47 x 10*' Pa s which
agrees well with the value of , = 1.55 x 10*' Pa s determined
from [ = 4; this agreement shows the self-consistency of our
matching method. For the case z = 1200 km, n,/n, = 8, the

TABLE 5. The rms Errors Between Predicted and Observed

Nonhydrostatic Geoid for the Case z = 1200 km

Degree [ (o,), m o, b, m Degree [ (6,), m I 0, m
=2 158 0.82 19.8 =3 8.4 0.78 246
1=3 152 0.87 10.0 =3 50 0.65 17.1
1=4 13.6 0.25 14.8 =4 30 0.13 10.3
=5 16.3 —0.52 21.2 =35 5.8 0.53 6.6

Here y, /n, = 18 and §_ = 34.1 m.

Here i, /n,=8and 6, = 323 m.
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value of n, determined from [ =2 is 2.31 x 10*' Pa s which
again agrees very well with n, = 2.26 x 10*' Pa s obtained
from [ = 4. A preliminary estimate ol the lower mantle vis-
cosity for z = 670 km therefore is i, = 27.2 x 10*' Pa s, while
for z = 1200 km it is y, = 18.3 x 10?' Pa s. On the basis of
these results it appears that the value of 1, is not very sensitive
to the choice of n,/n,, and it seems to have a reasonably
well-constrained value of i, = (2.0 + 0.5) x 10?' Pas.

The best correlations between the predicted and observed
horizontal divergence fields obtain at [ =2 and 4 (compare
Figure 19). A more direct illustration of the correspondence
between these two fields is given in Figure 23 where we pres-
ent maps of normalized divergence fields for the degree range

| = 2-5. Both divergence fields have been normalized accord-
ing to

M

b2

DY Z(0. §)
=—1

[

5 ] 12
[ ) D,mn,m*]

=2 m=—1

Il
3

VH.u:

where the D™ are the harmonic coefficients of the pre-
dicted/observed divergence. The fields have been normalized
to facilitate a direct comparison between them since the am-
plitude of the predicted divergence depends on the value of #,
which has been chosen to match the predicted (purely poloi-
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dal) and observed (poloidal and toroidal) kinetic energies of
the surface flow. The agreement between the maps is rather
good and the major mistmatch between them is due to the
continents of North America, Asia, and Australia which are
incorrectly shown to be subducting in the predicted diver-
gence map. This is due to an obvious deficiency in our simple
viscous flow model which does not include the important ef-
fects of lateral variations in chemistry which adds positive
buoyancy to these continental blocks.

We complete this discussion of the two-layer mantle by
presenting some results for the surface topography field, da(6,
¢). In Appendix B we show that the spherical harmonic coef-
ficients of the surface topography produced by internal density

FORTE AND PELTIER: PLATE TECTONICS AND LATERAL HETEROGENEITY

anomalies in a self-gravitating mantle are

I a
oa" = ——— f T's n /M d)py), () dr' - (46)
(Po — P b

where T, is the dimensionless topography kernel. From (46) it
is clear that the topography, like the geoid, is sensitive only to
the ratio of the viscosities of the upper and lower layers. In
Figure 24 we present some profiles of the kernel T; for the
cases #,/n, = 18 (z = 670 km) and #, /iy, = & (z = 1200 km).
As we point out in section 5, there is a crucial trade-off be-
tween the surface topography induced by mantle flow and the
viscosity stratification inferred by fitting isostatic geoid anom-
alies.

5. DiscussioN AND CONCLUSIONS

The agreement between the observed surface fields and the
fields predicted with our spherically symmetric viscous flow
models is encouraging (compare Figure 23). However, in these
models the lateral density variations can drive only a poloidal
flow, and thus we are unable to reproduce the observed equi-
partition of kinetic energy between poloidal and toroidal fields
at the earth’s surface. The generation of toroidal flow may be
accomplished by introducing lateral viscosity and/or chemis-
try variations which then produce a nonlinear coupling of the
poloidal and toroidal scalars in the momentum equation. We
believe that this coupling will be most important in the near-
surface regions of the earth where the lateral variations of
rheology and/or chemistry are the most extreme. It follows
therefore that in the earth’s mantle the internal density hetero-
geneities will mostly drive a poloidal flow, part of which is
then converted to toroidal flow in the near-surface regions and
in the process the poloidal flow will itself be modified. In this
scenario the near-surface generation of toroidal flow must
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Fig. 25. Behavior of the predicted geoid when poloidal-toroidal coupling at the surface is introduced via a poloidal
conversion factor. A conversion factor o simulates a (1 — «?) x 100% flux of energy to the toroidal field. (a)-{(c) Degree
correlations of corrected, nonhydrostatic, GEM 10B geoid with predicted geoid as a function of «. (dHf) Degree variances
{in meters) of predicted geoid as a function of «. Dashed horizontal lines are degree variances of corrected, nonhydrostatic,

GEM 10B geoid.
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TABLE 6. Degree Variances of the Predicted Surface Topography

Degree Degree
i Variance, m

a=10,n.Mm,=1

=2 695
=3 449
=4 582
=35 1012
a=10,n,/n,=20z=0670km
=2 538
1=3 342
=4 452
=5 753
a=0875n,/n,=1
=2 542
=73 371
=4 486
=35 856

occur at the expense of the interior poloidal flow, thus re-
sulting in a near-surface poloidal flow of reduced intensity.

The generation of a toroidal flow may seriously com-
promise the validity of our predicted geoid fields. As noted
previously, the predicted geoid will very much depend on the
fine balance achieved between opposing contributions from
the effective lateral density variations due to the induced sur-
face topography and the internal density heterogeneities. It is
of utmost importance therefore that the surface topography be
properly modeled il one hopes to predict correctly the geoid
field. The greatly improved geoid correlations obtained with
the two-layer model are due entirely to the reduction in the
amplitude of the surface topography which is produced by
increasing the viscosity of the lower layer. We believe that if
one also introduces near-surface lateral viscosity/chemistry
variations and hence generates toroidal flows by coupling out
of the poloidal field, a similar reduction in topography may be
achieved since the weaker near-surface poloidal flow will sup-
port a reduced topography (we assume that the toroidal flow
will itself produce little or no topography). This suggests to us
that models incorporating lateral viscosity and/or chemistry
variations may allow us to fit the predicted geoid to the ob-
served nonhydrostatic geoid with a smaller viscosity increase
at depth than is currently suggested.

We propose the following (admittedly ad hoc) numerical
experiment to illustrate this trade-off between the inferred vis-
cosity ratio #, /1, and the conversion of poloidal to toroidal
flow by introducing the notion of a “poloidal conversion
factor” a. With it we can mimic the effect of the flux of energy
from poloidal flow to toroidal flow in the near-surface region
by simply multiplying the poloidal scalar p,"(r = a) by « thus
simulating a (1 — %) x 100% flux of energy to a toroidal flow
which we assume contributes little or nothing to the geoid. In
Figure 25 we have plotted the variation of both the degree
correlations and variances of the predicted geoid as a function
of the poloidal conversion factor. It will be observed from
Figure 25, for example, that in a constant viscosity mantle
(Figures 25a and 25d) a dramatic improvement in the [ =2
geoid is obtained with a conversion factor of only 0.875, and
we can trace this improvement directly to the surface topogra-
phy. In Table 6 we have provided the degree variances of the
surface topography field produced by a homogeneous mantle,
a homogeneous mantle with a conversion factor o = 0.875,
and a two-layer mantle with #, /i, = 20 and internal bound-
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ary at z = 670 km. From Table 6 one may see that the very
good match between the predicted and observed degree 2
geoids for #, /n, = 20 is due to a reduction in surface topogra-
phy from 695 to 538 m and that an almost identical reduction
is achieved in a constant viscosity mantle with only a 23%
flux of energy out of the poloidal flow.

An interesting result that has emerged from the analysis of
section 4.2 is that the absolute value of the steady state vis-
cosity of the upper mantle, which has been inferred on the
basis of the observed energy in the surface plate motions,
seems to be practically independent of the value of the lower
mantle viscosity which is inferred by also including the geoid
data. Thus, although the ultimate viscosity contrast between
the upper and lower mantles will remain in doubt until the
effects of lateral viscosity/chemistry variations are fully investi-
gated (A. M. Forte and W. R. Peltier, manuscript in prep-
aration, 1986), it appears that a reasonable estimate of the
upper mantle viscosity is n, = (2.0 +£ 0.5) x 10*' Pa s. This
value of the viscosity is in modest discord with the upper
mantle viscosity, 7 =~ 1 x 10®* Pa s, inferred from glacial iso-
static adjustment analyses [e.g., Peltier, 1982], and thus one is
led to enquire whether the viscosity governing postglacial re-
bound might represent a transient value [Peltier, 1985b; Pel-
tier et al., 1986]. Peltier et al. [1986] have shown that the
transient relaxation provided by the viscoelastic Burger’s body
rheology will satisfy glacial isostatic adjustment data provided
that the elastic defect is large; in this limit the rheology is
effectively a Maxwell rheology governed by an effective vis-
COSItY ¢ given by

M2
Ny + 12

Hetr = (47)
where #, is the steady state (e.g., convection time scale) vis-
cosity and #, is the transient viscosity. Since the # of the
upper mantle governing postglacial rebound is known to be
near 1 x 10! Pa s, we may use (47) and our preliminary
estimate of 7, = 2 x 10?' Pa s to discover that the transient
viscosity in the upper mantle is n, = 5, = 2 x 10*' Pa s (ie,
Her = 311). We suggest that transient creep experiments on
olivine should be performed in an attempt to verify this im-
portant prediction.

In summary then, we have shown that the Green function
method has enabled us to develop a very simple and straight-
forward relationship between the convective flow in the earth’s
mantle (as expressed by the poloidal flow scalar in equations
(26) and (38)) and the lateral density variations. In attempting
to provide a unified description of both the surface plate mo-
tions and the nonhydrostatic geoid we have obtained prelimi-
nary estimates of the absolute viscosity values in the mantle.
Although the value of the lower mantle viscosity may yet
change pending future analyses of the influence of poloidal-
toroidal coupling, we find that a reasonable first estimate of
the steady state upper mantle viscosity is n, = (2.0 + 0.5) x
10! Pas.

APPENDIX A:
HomoGENEOUS, INCOMPRESSIBLE MANTLE

Al. Derivation of the Green Function
The required Green function must satisfy equation (25), that
is,

D2pM(r, r) = 8(r — 1) (A1)
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When r # ¢, (Al) is the biharmonic equation whose solution
is easily found; therefore the solution of (Al) is split in two
parts: a solution defined for the region ' <r < a and a solu-
tion for the region b < r < r". These two solutions must then
be joined at r = r’ by applying the appropriate matching con-
ditions. The biharmonic equation

D2p,™(r, ¥) =0

is a fourth-order differential equation whose solution will con-
sist of the sum of four linearly independent functions:

B D
p;"'(r,r’]:Alr‘-%’—J—-;l-l—-i-C,erﬁ—T]l r<r<a
r
(A2)
m ’ i 32 1+2 DZ ’
Py (r,r)=A2r+'—J:—l+C2r = b<r<r

In (A2) there are eight coefficients which are found by ap-
plying the boundary conditions at r = a, r = b and the match-
ing conditions at r =r. Two boundary conditions are ob-
tained by requiring that the radial component of the fluid
velocity u, is zero at the deformed bounding surfaces of the
fluid layer (which to first-order accuracy may be taken as
applying at the underformed, reference positions of the bound-
ing surfaces):

=
]
et

cu=7+(Vx Ap + Ag)

A%p (A3)

It
- | —-

Therefore, from (A3) one sees that if u, = 0 for all # and ¢ at
both r = a and r = b, then

P r)=0 r=ab (A4)
Two more boundary conditions are obtained by requiring that
the shear stresses a,, and o, are both zero at r = a and r = b,
and as shown by Chandrasekhar [1961, pp. 224-225], this
condition implies that

2

Mr,r)y=0 r=a,b (AS5)

EPJ

Three matching conditions are obtained by requiring that wu,,
u, (or u,), and o,, (or o,,) are continuous at r = r'; one can
therefore show that

me(r! r’)'r:r"“ e le(rs rr}|r=r"

dp,"(r, r') a dp/™(r, )

A6
d'r F=prE dr L i ( )
Ip". )| _ 4 1)
dr? e dr? P

The final matching condition is obtained by integrating equa-
tion (Al) from r ="~ tor =" and using (A6) to obtain
&p"(r, r')
dr?

_ d*p,m(r, ')

3
i dr

=1 (A7)

r=r=

The eight conditions contained in (A4), (A5), (A6) and (A7)
when applied to (A2) then yield the following expressions for
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the eight coefficients:

D +
A1= _az:ll BI= _Clazl :
I 1 1 SRRY A b 2143
&= I L (A8)
220+ 3)2A=1) "1 1 —(a/b)**?
- 1 azi 1 ]_(rr}.'b}zf 1
YT2@4R —1) 113 1 —(a/b)P !
and
D +
Az= _bufl B2=“Czb2I ?
1 11— (a3
c, = (r'/a) (A9)

2020+ 3)20+ 1) F 1 — (bla)P 3

b 1 bﬂ—l 1 — (rr},ﬂa]zi—l
27 @R — 1) ¥ 1 — (bja)P !

In order to obtain expressions for the kernel functions de-
scribing surface divergence, geoid height, and surface topogra-
phy one requires expressions for the derivatives of the poloidal
scalar which is given by (26), that is,

p,"(r) = & [J- {ﬁlllf—{rl (p)"(r, v') dr’
n r r
+ J.’ [_p,};:"(?"_] (p),"(r, 1) d-"':l (A10)
b

where (p,),"(r, ') is the Green function valid for ¥ < r < a and
(p,),"(r, r') is the Green function valid for b < r < ' (see (A2)).
From (A10) one can show, using result (A6), that the Green
functions for the first, second, and third derivatives of p,"(r)
are the first, second, and third derivatives of p,"(r, r'), respec-
tively.

A2. Surface Divergence Kernel
Since V - u = 0, then

1 0

V,-u= —— —(rlu All
i 35 (AL1)
Now, to first-order accuracy, u, = 0 at r = a, and therefore

from (A11) we get
(A12)

Vy-ulr=a)= —au,/or|,—,

If one substitutes (A3) into (A12), expands into spherical har-
monics, and uses result (A4), then one can show that

I(I + 1) dp,"(r)
) (r=a)=—— Al3
(Vy - w)"(r = a) P & L. (A13)
Result (A13) proves equation (6a). Now, since
") _ 4o J’ ")) de) ) A
dr r=a L r dr r=a

substitution of (A2) into (Al4), and use of (A8), allows one to
rewrite (A13) as

(Vi - W)™ = @) = "; f S p)m0) dr
b
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where setting r = a and r = b in (A21), thus producing two simulta-
; amaal+3 et neous equations which may be solved to find (¢,),"(* = a) and
;{gj : 3 I:l‘ 1l ir;’;}zf” e L_z i ir‘j:;” ]:l (¢,),"(r = b), and having done this, one may then show that
r"1—(a a’r —(a

S{r) =
r !
(¢ ") = (U;p),"(r) = (—)
A3. Geoid Kernel a
If one expands all quantities in (33) in terms of spherical AR
(1=K +K,)+ KK, |-

harmonics, then the following result is obtained:
] (A15) p\2i+1
A=)
r

The nonhydrostatic pressure may be obtained from the § com-

d(u,),"(r)

1
s =———— [{Pl},’"(r =a) -2 =
a

9olPo — Pu)

ponent of the momentum equation (15): KU, )" = a) + 4rnaG X" = a)
1o 1 6 21+ 1
P, = [Aul, + po = —+
raﬂ r o6 P\ *1 a\2+! a\2i+1
—[- Kjll—|- +1{-
where one can show from (19), assuming a purely poloidal (a) [ ( (r) ) (r) ]
flow field, that
10 ¢ [K(U )™ b)+—4b X,"™(r = b) (A22)
Aul, = —— — — A ’ Wi = =
[Audo = =2 362 4P &t
and thus if one expands all quantities in terms of spherical W
harmonics, one can show that _ 4naG p, 4nbG py

(A23)

[

20+ 1 g, 20+ 1 g,

d
P)" = —n—[rDp™r)] + i Al6
(P " dr [rDip"(0)] + pol@1) s When expression (A19) is substituted into (A22), one may then

where D, is the transformed Laplacian operator in (24). Now, go on to show that

from (A3) it follows that 4naG [ ; ;
. (¢)™a) = _Zm G(rYp,),"(r) dr’ (A24)
b
(),"() = —= I + Dp,"() (A17)
r where
If (A16) and (A17) are substituted into (A15) and use is made , KK, (BYHH]1
of the boundary conditions (A4) and (A5), it follows that Glr)=[1—-K,+ b, a
mo__ # - Po Mo
da" = X"r=a)+——"——(¢,),"(r =0q) (A18) P\I+2 A
Go—p) 9alPo—p) - (—) { (~) (—)
a r
where
b 21+2
- ()16
- n @ 3+ d ! 1+K,\a
X"r)=—|—-r—+ p,"(r) (A19)
9o dr? r o dr
, K, (b\]/b\'"?
Similarly, in the case of the core-mantle boundary deflection, = B(r) 1 - % \G 7 (A25)
ob,™, one can show that .
1 Po and where
0b" = ——— X\"r = b) + ———(¢,),"(r = b)
(po —r.) Golmg — p.) A {1 + 2) e N )
7 TP L e | i St A
(A20) 2A=1\r 1 —(a/by* !
If one now substitutes (A18) into (30) and (A20) into (31) and L+ =1 fa\' L = (/b3 (A26)
combines the results in (32), then one may show that 204+ 1 ) 1 —(a/b)**3
4naG W+ 2) (BN 2 1 = (r/a)? !
m U m B(r')y= —m| — _—
(‘151): (r) = ( mt)] (r) = A+ 1 (a) (') =1 (."') 11— (b;a]“ 1
fi U+ =1 (BN 1 —=(fa)?3
X "r = + me. _ =
[ =)+ @) = “’] 2+ 1 (,) =@ 4%

4nbG (BN Po The nonhydrostatic geoid height field is obtained from ¢,(r =
T+ (_) I:X‘ F=bi (@ = b):l @Azh a) by dividing by g,, and thus from (A24) one has

9o
In (A21) it is clear that to find (¢,),"(r), one must know m_ 3 l ! ' M 3
(¢,),"(r = a) and (¢,),"(r = b); this is easily accomplished by (Ge) 20+1p Gl Nen)™r) dr
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where (Ge),™ is the harmonic coefficient of the geoid height
field, p is the average density of the earth, and G(r') is the
geoid kernel given in (A25).

The effects of self-gravitation on the geoid are contained in
the constants K, and K, which are given in (A23). To obtain
the geoid kernels, G(r), for a non-self-gravitating mantle one
simply sets both K, and K, to be zero in (A25).

Ad. Surface Topography Kernel

The expression for the spherical harmonic coefficients of the
surface topography is given in (A18). To determine X ,"(r = a),
one uses (A19) to show that

X"r=a) = J Cr)py)"(r') dr’ (A28)
b
where
, 1 E i 1 _{r:}(b}zna
‘= [" = () =@
a -2 1 _(rf};b)ZI'—l

If one now substitutes (A28) and (A24) into (A18), then the
following expression may be obtained:

1 a
dat = ——— J. Tr'Yp,)"(r) dr (A30)
(o — Py Jb
where the dimensionless surface topography kernel is
) = Cr) + —— 22 G ) (A31)
2041 p

APPENDIX B: INHOMOGENEOUS (TWO-LAYER),
INCOMPRESSIBLE MANTLE

B1. Derivation of the Green Function

As in (A2), the Green function (p;),"(r, r'), valid in region i
(i=1,2, 3,4, 5 and 6; see Figure 16 and equation (39)) is
given by the expression

(pi}im{rl r’} = A.'rt + BI‘

r_I'+1

+Crlit? 4+ f—_‘l (B1)
For either case 1 or case 2 (Figure 16), equation (B1) shows
there are 12 coefficients to be found; they are determined by
applying the free slip boundary conditions at r = a and b, by
matching conditions at r = r’ (see Appendix A), and by apply-
ing appropriate matching conditions at r=d. Since we
assume that a whole mantle flow exists, the conditions that we
impose at r =d are continuity of mass flux, normal stress,
tangential stress, and tangential velocity:

Puthyly=a+ = Pribl,=4- (B2a)
Oplr=ds = Oplya- = (oL — P90 0d (B2b)
O pglr=a+ = Orpl=a- (B2¢)

Ugly=a+ = gl = 4- (B2d)

where p, and p, are the densities of the upper and lower
layers, respectively, and dd is the deflection of the material
interface r = d from its reference level. A considerable sim-
plification is made by assuming, as did Richards and Hager
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[1984a], that p, = p, (= 4.43 g/cm?) since then we can ignore
the deflection dd in (B2b). When the 12 boundary and match-
ing conditions are applied to (B1), we find (after some tedious
algebra) that the coeflicients of (B1) are given by the following
expressions:

Cre 1 1 (b\*
* 20214 )IG,G4(b/d)* — G,G,] {21+ 3 (d)

L6 =@ 6 -0 T

J— ) .
Dy=r D,

‘ 1 l b 2 b 2l+1
By 2214 1)[G,G(b/d)* — G,G ] {_ 20+3 (E) (F)

[ Jere =@ -0)" Jed

By=—d**By By =(ar) ' Cy

1 ra I1+2
Ay = -01—3 A, Ay = (‘) Dy

a

1
C'l=;.1_f—_]C1
1 r 2l+1
C/=——| C.,F = 'F
! f+21(1+2)|: 2 ’+(d) Dsfz]
D=t p
1 d 2l+1
D,/ = 5 [D;F3 + (;) Ca'F.,,]
Bl=’ﬁ+431’
1 d 2 d 2l+1
B':—-‘* ki DrF _ § —
: 2:+1(r') [ e C’F’(r') ]
I ’
Alzrff—SAl
1 d 2 N2+ 1
st fenon ()
Bimto it (G 9 1
2 =5 2 2T 00+ 1)20 + 3)
] ' ! ' s
D, = pi+2 D, D, =D,

T2+ 12— 1)

B, = ___bI+ABr B r_(é)f“l C ’
2 2 - e ¢ 2.

r

1 , r-r 1+2
A, = T A, A, =(‘5) D,
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where 1/y for y wherever it occurs in F,; for example,
1 2043 s 1 pA\2H+3 1
Ei= . LS + v2U1 +2)—(a/b)*" 211+ 2)(21 + 1)1 —7)] F,= “y|:f+ =210 +2)— (E) I+ 2)21 + 1»(1 - —)]
¥ 7
F, =11+ 2)2] — t(l—_—}') Similarly, in the case of G we make the following substitu-
¥ tions:

1 ~.= .-hh .=l,"',4
Fy=—[200 + 1) — 1) + 121 + 1) Gy = G{F;>Fpb—sa) i

y .
For example,

— (dfa)* (1 + 1) — D21+ 1)(y")] F"] (d)2t+3 }‘;*5

y—1 YTrra0+2) \a)  2+1
F4=(!+l)(f—1](2f+3)(—y—)

Proceeding in this manner, one can verify that the expressions

20f+y2014+2)] (21-1) for C4 and D are analogous to those for C5 and D5 in case 1:

= I+ 10— 1)1+ 3
; o2+ T n by L
Cs c

=ru—1 6

| — Ezna 21 + 2) 1—y ?
(—y )+(d) {2f+1)[1+[f+2:(1+2)]( b )] Cy' = l { 1 (E)

¢ 7 72020+ 1)[G,G(a/d)* — G,G] |21+ 3 \d
201 +2) (1—}-)_2y{f+1)(1—1)+:{21+1) A2+ Do e 203 2+

o Lf+2U1+2)] Ty hy #2143 1 #2201 a\2-17 _
=@ o=@ -0 e
A=+ 1) (I=DRI+1) [3—1 a 21—-1\d/ \a r

¥

) TEEEE)

_f+nM+2) 2 (y—l)
7

D, ="*2D

S+ 1 —1)

Fymdlga| -2t 220 S
! [ IS+ 20 +2] h

l 1 a 2 a 2141
De'=—2ar+ 1)[G,G,(a/d)*—G,G,] {_2I+ 3 (E) (r_)

v (5)2“3 I+ 2)21 + 1) (I — )J)]
d Sf+201+ 1) b . I:I . (r;)zuajlés N 1 (a)4|:1 B (E)ZI 1]61}

a

2i—1\d r

I+ 2)21 — 12! + 3) (1 — )))
Fg= -2+
I+ 20l + 2) b The remaining coefficients are
+ 2 2?([ + ]XI — l) + 1(2.!' + 1) Bﬁ = _bl I-d,Bﬁ- Bﬁ‘ - {b;’r')’_lcs’
h 7
1 . ) ) .
A\ 2 1—9 Aﬁ-:_FAo Ag' = b Dy
i (~) @I+ D[ 1+20+10—1) ——)]
a h ¥
F d\**3 F, C. = 1 &5 o 1 [C B +(r’)2“1D 'F:l
o P, -/ S| () i [ 5T -1 5 T AL Ye 1 = 642
Y20+ 2) (b) 20+ 1 v f+2a0+2) d
rd 21+3
G,=L+(E) =B e o1 & A\
2+1 \a S+ 200 + 2) Ds=r'"iDy Dy =2|DJFy+(=)  C/F,
F d\* ' F
Gy=—"—+ (— =t
20+ 1 b h 1 d\2 d\2+1
T AT 2 e
o _E (R, Bs=7""Fs 35'21+1(F)[D”"_C“F5(F) ]
T h \d 2l + 1
1
and As === 4§’
r
Y =nu/n,
f=21+4l+3 L (Nc.r g (1Y
=zt + a4l + A = —| | C/F, — DJ/Fg| —
=) oo (y) ]
h=42 +1-2
The notation of primed coefficients in the above equations is C,= 1 6 Slelie 1
used to indicate that these quantities are completely dimen- = 220+ 1)21 + 3)
sionless numbers. For case 2 the coefficients are obtained by 1
straightforward alterations of the coeflicients given for case 1. Dy=7"t2p D,/=DJ+ T
First, we introduce the modifications to F and G defined @1+ 1)2l = 1)
above and use the notation F and G for the modified versions: B,=—d**B, B, =(afr)"'C,

Fi=Ffa—by—1fy) =18 1 r\i+2
. . . A“: A“: oh D4a
where we substitute b for a wherever it occurs and substitute
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where, again, the primed coefficients are dimensionless num-
bers.

B2. Surface Divergence Kernel

To determine the surface divergence field in a two-layer
mantle, we again use (A13) from Appendix A. The radial de-
rivative of the poloidal scalar at r = a is obtained from (39a):

dp"|  _go [*d@)"(nT)| (™) o,
dr r=a qu d di" r=a r
d m ] myt
+ 9o j’ dlpa),"(r, ) (p)™(r) & (B3)
rh. b dr r=a v

Using (B1) and the coefficients tabulated in section B.1, one
can show, using (A13) with (B3), that

(Vg -w),"(r=a)= ? j S’y v, d)py) "0y dr' - (B4)
u Jb

where

S(r'iy. d)=p4) d=r'=a

1
ST A= E) b= r<d

where

) = I + 1)[«1(5),4; + 0+ l}(;)B;

a ! r! i+1
+ (1 + 2)(—) C/l— (- 1}(—) D,.':I
r a
B3. Geoid Kernel

In our two-layer model we have assumed, for simplicity,
that the densities of the upper and lower layers are equal, and
therefore any deflection of the interface r = d will not affect
the perturbed potential ¢, : consequently, (A22) of Appendix A
will also be valid for the two-layer earth. The first task is thus
to determine the kernels for the quantities X,"(r = a) and
X ,™r = b). From (A19) we have

] a3+ d
L op— gL £} S — L - BS
X,"(r = a) gu[ = = P (N, =a (B3a)
i [ @ 3+nd]
X,"r = b)=g—0|:—r;5+ T o (PO (B5h)

If one substitutes (39a) into (BS5a), then the following ex-
pression is obtained:

X"r=a)= j K0 py ") dr’ (B6)
b
where
K, (r') = p,"(4) d<r <a
K r) = l p,"(3) b<r<d
Y
where

a a
p,(i)= 2[ —I(I*+ 31— 1)(;)/1; +(+ DI —1— 3)(;)8,—’

a ] ¥ t+1
+ I+ 1) + 2)(;) C/—1Il+ 10— 1](;) D;]
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Similarly, if one substitutes (39b) into (B5b), it can be shown
that

X\"(r="0)= f K (r")p )"0 dr’ (B7)
(]
where
Ky =vp,(6) d<r<a
K")=p,2  b<r<d
where

p,"(i) = 2[ 112+ 31— ”(;)A; +(I+ P —1— 3)(2)3‘i

b I v 1+1
+ I+ 1){:+2](;) C! -+ 10— 1)<3) D,:]

If one sets r = a in (A22) and substitutes (B6) and (B7) into the
resulting equation, the following expression for the self-
gravitating potential is obtained:

4naG [“

B8
A+l ) o)

(¢,)"(a) = G(r's y, d)p),™0r') dr'

where

Gr's ys d) = (/a) " {1 + [(1 — K1 + K})
+ K Ky(b/a)* '] '[[1 + Ky(1 — (b/a)** "]
- [K, + (a/r') " 2K ()]

— (b/r') ALK b/ + K0T (B9)

where the constants K, and K, are defined in (A22). The
spherical harmonic coefficients of the nonhydrostatic geoid
(G,),™ are directly obtained from (B8) by dividing by g,:

3 1 (
Go" =577 F J; Glr's v, dpy), () dr'
where p is the average density of the earth and G(r'; y, d) is
the dimensionless geoid kernel given in (B9).

B4. Surface Topography Kernel

Once the geoid kernel has been obtained, it is a simple task
to obtain the kernel for the surface topography as shown in
section A4 of Appendix A. From (A30) and (A31) one obtains
the harmonic coefficients of the surface topography in a two-
layer mantle:

1

B e
(Po — Puw)

.[ Tr's v, d)py)"(r) dr’ (B10)
b
where the dimensionless topography kernel is

P b 3 pﬂ .
J',(r,?,d}=K[{r]+—-—Gl(r.)’,d]

11
20+1 p (B11)

AppPENDIX C: HArMONIC COEFFICIENTS OF THE HORIZONTAL
DIVERGENCE AND OF THE RADIAL VORTICITY

In Table C1 the first component of each coeflicient is the
real part, while the second component is the imaginary part.
The complex spherical harmonic basis functions employed to
compute these coefficients are normalized according to equa-
tion (23). All the coefficients have units of radians per year.
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TABLE Cl. Spherical Harmonic Coefficients of the Horizontal Divergence and the Radial Vorticity

Surface Divergence

Radial Vorticity
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I=10
L=10
L=10
I=11
I=11
I=11
I=11
I=11
I=11
I=11
I=11
I=11

M=
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(-.1276E-11,
(-.4297E-08,
(-.1907E-08,
( .1671E-08,
(-.1989E-08,
(-.7776E-09,
( .1671E-08,
( .2967E-09,
( .1434E-08,
(-.1751E-08,
(-.6761E-09,
(-.1895E-08,
(-.1429E-08,
( .3319E-08,
( .1838E-09,
( .2798E-08,
(-.1171E-09,
(-.1529E-08,
(-.2472E-08,
( .7137E-09,
( .2637E-08,
(-.6579E-09,
( .7742E-09,
(-.7488E-10,
( .1545E-09,
(-.2336E-09,
(-.6265E-10,
( .9108E-09,
( .8730E-11,
( .4306E-09,
(-.6442E-09,
(-.8011E-09,
( .5058E-09,
( -7913E-09,
(-.8902E-09,
(-.2176E-08,
( .7173E-09,
( .1052E-08,
( .1491E-08,
(-.1907E-09,
( .2410E-09,
( .4674E-09,
(-.8065E-10,
(-.8440E-10,
(-.1412E-08,
(-.2952E-09,
(-.1823E-10,
( .5506E-09,
( .9306E-10,
(-.2359E-09,
( .1100E-08,
( .9819E-09,
(-.4490E-09,
( .6942E-09,
( .1393E-08,
( -2539E-09,
( .6282E-09,
( .2771E-09,
(-.6788E-09,
(-.1788E-08,
( .1800E-10,
( .3185E-09,
( .1556E-08,
(-.9438E-09,
( .1162E-09,
( .1165E-08,
(-.1803E-08,
(-.2134E-09,
( .3804E-09,
( .1138E-08,
( .5743E-09,
(-.1277E-08,
( .2238E-09,
(-.4639E-09,
( .5618E-09,

.0000E+00)
.0000E+00)
-.2741E-08)
.0000E+00)
-.1498E-08)
-.4086E-08)
.0000E+00)
.1666E-08)
.1487E-08)
-.1187E-08)
.0000E+00)
.4615E-09)
.9861E-09)
.2207E-09)
.4437E-08)
.0000E+00)
-.5437E-09)
-.7218E-09)
-.1280E-08)
-.3081E=-08)
.6067E-09)
.0000E+00)
.1281E-08)
.1364E-09)

-.6487E-09)

.3703E-09)
.3363E-09)

-.2619E-08)

.0000E+00)

=.1305E-10)

.8977E-09)
.3687E-10)
-.3914E-09)
.9884E-09)
.2294E-08)
-.1108E-08)
.0000E+00)
-.1183E-08)
.3129E-09)
.7263E-09)
-.2488E-09)
-.8488E-09)
.2182E-09)
.1416E-08)
.1650E-08)
.0000E+00)
-.6354E=-09)
.1113E-09)
.3984E-09)
.1171E-08)
-.7648E-09)
.4691E-09)
~.5908E-09)
-.1044E-08)
.4077E-09)
.0000E+00)
.5451E-09)
-.4306E-09)
.3871E-09)
-.3453E-09)
-.4938E-09)
-.4415E-09)
.8669E-09)
-.5855E-09)
-.3864E-09)
.9419E-11)
.0000E+00)
.1377E-08)
.1384E=-09)
.1980E-09)
.8229E-09)
.3206E-09)
-.3061E-09)
.7759E-09)
-.3357E-09)

(-.7595E-12, .0000E+00)
(-.4198E-08, .0000E+00)
(-.8511E-09, .1991E-08)
(-.2831E-08, .0000E+00)
(-.3527E-08, .1085E-08)
( .1806E-09, .1459E-08)
( .1418E-08, .0000E+00)

(-.1850E-08,~-.8071E=-09)

.1089E-08,~.3282E-08)
.5649E-10,~.4665E-10)
(--1219E-08,~-.1507E-08)

(-.1497E-08, .1092E-08)
( .8667E-09, .1544E-08)
( .3436E-08, .0000E+00)
(-.2710E-09, .4106E-09)
( .7495E-09,-.7679E-09)
( -1430E-09, .1794E-08)
( .5018E-09, .5685E-09)
(-.1275E-09, .0000E+00)
( .2436E-08, .5064E-09)
(-.1638E-08, .8328E-09)
(

(

(~-2069E-08, .0000E+00)
(-.8366E-10, .2505E-09)
(-.3946E-09, .4216E-09)
(-.3186E-09, .1678E-08)

( -4986E-09,-.1585E-08)
(--1311E-09,~-.8453E-09)
(-.6161E-10,-.1504E-08)

.2269E-08, .0000E+00)
-.1209E-08,~.6343E-09)
-.1237E-09,~.3143E-09)

-.1559E-08, .7356E-09)
.1499E-08, .3401E-09)
.6161E-09, .2610E-09)

-.2172E-09,-.3563E-10)
.5833E-09, .7307E-09)

-.9497E-09, .0000E+00)

.1369E-08,-.1081E-08)
.1860E-09,-.4102E-09)
(-.1177E-08,-.1310E-09)
(-.1639E-08, .5710E-09)
( .5953E-09,-.1568E-10)

(-.6951E-09, .1300E-08)
(=.3749E-09, .6116E-09)
( .3367E-09, .1327E-08)
(-.1512E-08, .0000E+00)

( .4113E-09, .1234E-08)
( .8465E-09,-.3895E-09)
( .9054E-09,-.4211E-09)
(-.7269E-11,-.7355E-09)
(-.4328E-09,-.4141E-09)

(-.6402E-09, .2938E-09)
(-.1396E-10, .1069E-08)
(-.3451E-09, .6044E-10)

( .2523E-09,-.2865E-09)
( .4114E-09, .0000E+00)
( .2849E-09, .3729E-09)
( -2691E-09, .1975E-09)
( -5213E-09,-.2176E-09)
( -4112E-09,-.8967E-10)
(-.2939E-09,-.1454E-08)
( -4866E-09,-.1973E-08)
(-.1114E-08,-.1214E-09)
( -2044E-09,-.1319E-09)
(-.5075E-10,~-.7745E=09)
( .1843E-09,-.2680E-09)
(-.3022E-09, .0000E+00)
(-.2119E-09,-.4407E-09)
( -3374E-09,-.3440E-09)
(--1667E-09, .4142E-09)
(-.3551E-09, .7699E-09)
( -4310E-09,-.1470E-09)
(-.6235E-09,~-.6607E-09)
(-.2713E-09,-.1271E-08)
(-.1048E-08,~.1765E-09)

3671
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TABLE Cl. (continued)

FORTE aND PELTIER: PLATE TECTONICS AND LATERAL HETEROGENEITY

Surface Divergence

Radial Vorticity

I=11
I=11
I=11
I=12
I=12
I=12
L=12
I=12
I=12
I=12
I=12
I=12
L=12
IL=12
I=12
I=12
I=13
1=13
IL=13
I=13
L=13
I=13
L=13
1=13
I=13
L=13
L=13

I=15
L=15
L=16
I=16
L=16
L=16
I=16
IL=16
I=16
I=16
L=16
I=16
L=16
L=16
I=16
I=16

M= 9
M=10
M=11

1l
o)
oOVweNoUkEWNEO

1l
[}
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M=11
M=12
M=13

(-.1488E-08,-.2954E-09)
( .6603E-09,-.1288E-08)
( .2882E-09,-.2009E-09)
(-.2333E-09, .0000E+00)
(-.1106E-08,~.8295E-09)
( .5137E-10,-.2445E-09)
(-.9840E-09,~-.1470E-09)
( .9216E-09, .8713E-10)
( .8188E-09, .6581E-09)
( .2903E-09, .6145E-10)
( .9583E-09, .1421E-08)
(-.6264E-09, .2221E-08)
( .5184E-09, .5133E-09)
(-.5619E-10, .1992E-08)
(-.9164E-09,-.5201E-09)
(-.5543E-09, .3618E-09)
( .8750E-09, .0000E+00)
(-.3133E-09,-.5776E-09)
( .8017E-09,-.1161E-08)
( .9236E-09,-.1026E-08)
(-.1286E-09, .1786E-09)
(-.4256E-09,~.6394E-09)
( .6654E-10,-.5226E-09)
( .3251E-09,-.1414E-08)
( .5088E-10, .3246E-10)
(-.5505E-09, .7924E-09)
( .2126E-09, .3678E-10)
( .1508E-08, .9868E-09)
(-.1229E-08, .9759E-09)
( .3344E-10, .6000E-09)
(-.6608E-09, .0000E+00)
(-.8171E-10, .3605E-09)
(-.8854E-09, .7306E-09)
( .7692E-09,-.4594E-09)
( .6684E-09, .4169E-09)
( .1090E-08, .6012E-09)
(-.6316E-09, .3621E-09)
( .9954E-09,-.9751E-09)
( .6450E-09,-.6045E-09)
(-.1499E-09,~-.1560E-09)
(-.1167E-08,-.1240E-08)
(-.5645E-09,~-.3674E-09)
(-.4688E-10,-.1425E-08)
( .3420E-10, .5297E-09)
(-.3185E-09,~.3359E-10)
( .5635E-09, .0000E+00)
(-.2714E-09,~-.1206E-09)
(-.4012E-09, .1138E-09)
(-.9881E-09, .5633E-09)
(-.5592E-09,~.4964E-09)
( .4754E-10, .3016E-09)
( .2146E-09, .5630E-09)
(-.1417E-09, .1079E-08)
( .9951E-09, .6090E-09)
( .4535E-09, .1267E-08)
(-.4365E-10,-.7223E=-10)
(-.6480E-09,-.8166E-09)
( .6976E-09, .2431E-09)
(-.8583E-09,~-.9150E-09)
( .1332E-08,-.1209E-08)
( .3459E-09, .1042E-09)
( .1391E-08, .0000E+00)
(-.6473E-10, .1076E-08)
( .8855E-10,-.1498E-09)
( .7079E-11, .7084E-10)
( .8462E-09,-.3651E-09)
(-.9232E-09,-.2533E-09)
( .4690E-10,-.6978E-09)
(-.3880E-09, .4485E-10)
(-.2233E-09,-.3110E-09)
( .6073E-09, .1227E-08)
(-.3338E-10, .1245E-08)
(-.2858E-09, .2528E-09)
(-.4332E-10,-.2852E-10)
( .8687E-09, .2219E-09)

(-.6282E-11,-.1045E-08)

(-.2571E-11,-.5179E-09)
(-.5268E-09,-.8406E-10)
(-.2877E-09, .0000E+00)
(-.3520E-09, .2602E-09)
(-.2569E-09, .4192E-10)
( .7061E-10,-.1034E-08)
(-.1878E-09, .2076E-10)
(-.2553E-09, .4218E-09)
( .1070E-08, .3155E-09)
(-.2757E-09, .5631E-09)
( .3952E-09, .9155E-10)
(-.1223E-09, .7297E-09)
(-.1046E-10,~-.4646E-09)
(-.2342E-09, .4705E-09)
(-.3923E-09,-.1129E-10)
(-.1510E-08, .0000E+00)
(-.3461E-09, .9216E-10)
(-.4243E-09, .5475E-09)
( .9647E-10, .1621E-09)
(-.7247E-10,-.5263E-09)
(-.7347E-09,~-.2667E-10)
(-.7899E-09,-.7200E-09)
( .8195E-09,-.5430E-09)
(-.9609E-10, .1154E-08)
( .7673E-09,-.1462E-09)
( .1012E-08, .3493E-09)
(-.1254E-09, .5120E-09)
( .3310E-09, .3462E-09)
( .2366E-09,-.5297E-10)
( .1336E-08, .0000E+00)
(-.6667E-09, .2539E-09)
( .2724E-10,-.3609E-10)
(-.1900E-09, .4611E-09)
( .1367E-08, .4780E-10)
( .6925E-09, .4662E-09)
(-.7441E-09,-.4226E-09)
(-.1084E-08,-.4542E-09)
(-.5613E-09,-.2353E-09)
(-.5230E-09, .5309E-09)
(-.1330E-10,-.2079E-09)
( .7682E-10,-.1053E-08)
(-.5143E-10, .5347E-09)
( .2177E-09,-.2760E-09)
( .3749E-09,-.2465E-09)
( .1421E-08, .0000E+00)
( .1296E-09,-.4357E-09)
(-.1405E-09,-.6132E-09)
( .5519E-09, .2516E-09)
(-.7413E-09, .3261E-09)
( .1078E-08,-.5655E-09)
( .1144E-08, .4246E-09)
(-.1730E-09,-.1227E-08)
(-.8192E-09,-.4332E-09)
(-.2312E-09, .8338E-09)
(-.6225E-09,-.2364E-10)
(-.3433E-09, .1429E-09)
(-.2245E-09,~-.5781E-09)
( .3443E-09, .4603E-09)
(-.1814E-09,—-.3770E-09)
( .4356E-09,-.1863E-09)
(-.4412E-09, .0000E+00)
( .4560E-09, .1741E-09)
(-.7977E-09,-.2176E-09)
( .2110E-09,-.1658E-09)
(=.1742E-09,-.1427E-10)
(-.5381E-09,-.1691E-09)
(-.6981E-10, .5192E-09)
( .5482E-10,-.3588E-10)
( .8721E-09,-.7883E-09)
(-.8382E-09,-.5939E-09)
( .2149E-09, .3592E-09)
(-.2345E-09,~.3057E-09)
( .6558E-10, .1510E-09)

(-.2178E-10,

.4174E-09)
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TABLE C1. (continued)
Surface Divergence Radial Vorticity
I=16 M=14 (--5939E-09, .1035E-08) ( -6820E-10, .6633E-10)
L=16 M=15 (-.2860E-09,-.1239E-08) (--2169E-09, .2113E-09)
I=16 M=16 ( .3709E-09, .2609E-09) (--3110E-11, .3981E-09)
I=17 M= 0 ( -4510E-09, .0000E+00) ( -8926E-10, .0000E+00)
I=17 M= 1 ( -4489E-09, .3130E-10) ( .6782E-09, .3761E-10)
L=17 M= 2 (-.4576E-09, .6244E-09) (-.1440E-09, .7760E-09)
L=17 M= 3 (—.1158E-08, .5412E-10) (--6758E-09,~-.7097E-09)
L=17 M= 4 (--4500E-10,~-.2086E-09) ( -3962E-09,-.3262E-09)
I=17 M= 5 ( -8295E-09,-.7639E-09) (--1695E-09, .3509E-09)
I=17 M= 6 ( -8717E-09, .6208E-09) (--3446E-09,-.4705E-09)
=17 M= 7 (--.1990E-09,-.1071E-08) ( -2019E-09, .6929E-09)
I=17 M= 8 ( -3285E-09,-.2157E-09) (-.8881E-09,-.3697E-09)
L=17 M= 9 (--5019E-09,-.1074E-08) ( -1077E-08, .1224E-09)
L=17 M=10 ( -4944E-09, .3876E-09) (--4336E-09,-.3870E-09)
=17 M=11 (--8288E-10,-.1796E-09) ( -7065E-09,~-.3305E-09)
L=17 M=12 ( -7736E-09, .2889E-09) (=-1639E-09,~.9936E-10)
L=17 M=13 (-.4240E-09,-.4381E-09) ( -2178E-11, .1562E-11)
L=17 M=14 ( -1262E-09,-.2407E-09) (--1476E-09, .9583E-10)
L=17 M=15 ( -4471E-09, .1027E-08) (=-3225E-09,-.8410E-10)
IL=17 M=16 (--6066E-09,-.1528E-09) (--1655E-09, .3656E-09)
I=17 M=17 (--2989E-10, .1571E-09) (=-2039E-09, .1800E-09)
IL=18 M= 0 (-.2578E-09, .0000E+00) (-.8902E-09, .0000E+00)
I=18 M= 1 ( -4174E-09,-.6274E-09) (--1131E-09, .1660E-10)
L=18 M= 2 (--1738E-09,-.6695E-10) (=-1706E-09, .1522E-09)
I=18 M= 3 ( -5384E-10,-.5262E-09) (--6050E-09, .8543E-09)
L=18 M= 4 (--8448E-09,-.1300E-09) (--2180E-09, .4012E-10)
L=18 M= 5 (--8720E-09,-.4950E-09) (=.5701E-09, .1396E-09)
I=18 M= 6 (-.2385E-09,-.8338E-10) ( -3773E-09,-.2195E-09)
L=18 M= 7 ( -9532E-09, .1738E-09) ( -3377E-10,-.1954E-09)
=18 M= 8 (-.3429E-09,-.9720E-09) (--4110E-09,-.7495E-10)
I=18 M= 9 ( +1142E-08,-.3784E-09) (--7895E-09,-.4393E-10)
=18 M=10 (-.5670E-09, .4077E-09) ( -9388E-09, .6419E-09)
I=18 M=11 (--2604E-09, .1787E-10) (=-2418E-09,-.2110E-09)
L=18 M=12 (—-3407E-09,-.4166E-09) ( -6395E-09,-.8685E-09)
I=18 M=13 ( -7086E-09, .2746E-09) (--2148E-09, .3623E-09)
I=18 M=14 (--6167E-09, .4142E-10) (=-1912E-10,-.4753E-10)
I=18 M=15 (--1344E-10,-.4311E-10) ( -2865E-09,-.3244E-09)
I=18 M=16 ( -2740E-09, .1718E-09) (=.4911E-09,-.1490E-09)
L=18 M=17 (=-3354E-09,-.5951E-10) (--8025E-10,-.1225E-09)
I=18 M=18 (--2493E-09,-.1037E-10) (=-1226E-09,-.2117E-09)
I=19 M= 0 (-.5796E-09, .0000E+00) ( -1136E-08, .0000E+00)
I=19 M= 1 ( -5141E-09,-.7836E-10) ( -1711E-09, .5630E-09)
I=19 M= 2 (--3006E-10, .7218E-09) ( -2951E-09,-.2840E-09)
I=19 M= 3 (=-1127E-09, .4154E-09) (--3877E-09, .2529E-09)
L=19 M= 4 ( -1461E-09,-.1736E-10) ( -2822E-09, .5270E-09)
I=19 M= 5 ( -3962E-09, .4502E-09) ( -4250E-09, .4342E-09)
I=19 M= 6 (--7836E-09,-.2610E-10) ( -1250E-09, .8466E-09)
I=19 M= 7 ( -1604E-09, .2480E-09) ( -5166E-09,—-.1288E-09)
IL=19 M= 8 (-.8469E-11, .2733E-09) (-.1120E-09,-.9567E-10)
L=19 M= 9 (=-2538E-10,-.1625E~-09) (--4320E-09,-.9384E-09)
I=19 M=10 ( -1086E-08,-.5357E-09) (--6619E-09, .6623E-09)
I=19 M=11 (--6866E-09, .1200E-08) ( .3500E-09, .9258E-09)
L=19 M=12 (--1270E-08,~.2409E-09) (-.5097E-09,~-.1451E-09)
I=19 M=13 (-.8472E-09,-.4152E-09) ( -1086E-09,-.3233E-09)
L=19 M=14 ( .3902E-09,-.2022E-09) (-.2990E-10, .2592E-09)
L=19 M=15 (=.9779E-10, .1454E-09) ( -1903E-09,-.2920E-09)
I=19 M=16 ( -3718E-09,-.5166E-10) ( -4740E-09,-.1205E-09)
L=19 M=17 ( -2895E-09, .3777E-09) (--5112E-10,-.3100E-10)
IL=19 M=18 ( -2101E-09, .3650E-09) ( -1904E-09,-.1926E-09)
IL=19 M=19 ( .8290E-10, .3305E-09) ( -6503E-10,-.5289E-11)
L=20 M= 0 ( .4051E-09, .0000E+00) (--2626E-09, .0000E+00)
I=20 M= 1 ( .8923E-10,-.3011E=-09) ( .7789E-09,-.8121E-09)
L=20 M= 2 ( -1058E-08,-.4791E-09) ( -9573E-09,-.1627E-09)
L=20 M= 3 (-.1319E-09, .1004E-08) ( .1240E-08,-.6879E-09)
I=20 M= 4 (--4708E-09,-.5682E-10) (--8766E-09,~-.3382E-09)
I=20 M= 5 (-.3615E-09, .3098E-09) ( -6971E-09,-.4403E-09)
I=20 M= 6 ( -3570E-09,~-.1046E-09) ( -4208E-09, .5501E-09)
I=20 M= 7 (--1853E-09, .3867E-09) ( -7396E-09,-.4278E-10)
I=20 M= 8 (--2922E-10, .8086E-10) ( -7670E-09, .9035E-10)
L=20 M= 9 (=-3486E-09, .9264E-09) (-.2416E-09, .2462E-09)
I=20 M=10 ( -8200E-09, .2728E-09) (--2900E-09,-.6844E-09)
L=20 M=11 ( -6811E-09, .7696E-09) (=.2743E-11, .1925E-09)
I=20 M=12 ( -2798E-09, .2675E-10) (—-2205E-09, .9048E-09)
I=20 M=13 (-.3120E-09, .2305E-09) (--.1814E-09,-.3591E-09)
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FORTE aND PELTIER: PLATE TECTONICS AND LATERAL HETEROGENEITY

TABLE Cl1. (continued)
Surface Divergence Radial Vorticity
I=20 M=14 (-.1917E-09, .1515E-09) ( .5360E-10, .3454E-09)
I=20 M=15 (=.1932E-09,-.1438E-09) ( .1715E-10, .1791E-09)
L=20 M=16 (-.3305E-09,-.3142E-09) (-.1197E-09,-.2010E-09)
I=20 M=17 (-.9765E-10,-.4863E-09) ( .7920E-10,-.2731E-10)
L=20 M=18 ( .1023E-09, .6250E-10) ( .3777E-09,-.5019E-10)
I=20 M=19 ( .2884E-09,-.3345E-09) ( .6242E-10,-.7418E-10)
I=20 M=20 ( .1777E-10,-.7572E-10) ( .1835E-10, .3197E-10)
I=21 M= 0O ( .1034E-10, .00O00E+00) (-.1724E-08, .000O0E+00)
I=21 M= 1 ( .2020E-09, .5850E-09) (-.3763E-09, .1280E-09)
I=21 M= 2 ( .6954E-09,-.4090E-09) (-.3041E-09,-.9667E-10)
I=21 M= 3 ( .9614E-09,-.4432E-10) ( .2745E-09,-.1363E-09)
L=21 M= 4 ( .6025E-09, .3297E-09) ( .1290E-09,-.8837E-09)
L=21 M= 5 (-.5547E-09,-.5119E-09) (-.8196E-09,-.2687E-09)
I=21 M= 6 ( .2694E-10,-.7996E-10) (-.6016E-09,-.3023E-09)
I=21 M= 7 (=.1534E-09,-.9156E-09) (-.2969E-09, .2642E-09)
L=21 M= 8 ( .3457E-09,-.4693E-09) ( .5387E-09,-.1493E-09)
I=21 M= 9 (-=.3059E-09,-.4042E-09) ( .3629E-09,-.1522E-09)
L=21 M=10 (-.3924E-09, .3623E-09) (-.3083E-10,-.3767E-09)
I=21 M=11 ( .2652E-09, .2549E-09) ( .2076E-09,-.1997E-09)
I=21 M=12 ( .9311E-10, .1068E-08) (-.2229E-10,—-.6661E-09)
I=21 M=13 (-.1919E-10,-.9121E-09) (-.2379E-09, .2434E-10)
I=21 M=14 ( .8635E-09, .9442E-11) ( .2161E-09,-.1640E-09)
L=21 M=15 ( .7415E-09, .1453E-09) ( .1028E-09, .4648E-09)
I=21 M=16 ( .9176E-10, .8856E-09) ( .1302E-09, .1306E-09)
L=21 M=17 ( .2356E-10,-.4729E-10) (-.3150E-09, .5018E-09)
1=21 M=18 (-.3420E-09, .5214E-10) (-.3598E-10,-.4462E-10)
I=21 M=19 (-.3003E-09, .1513E-10) ( .1258E-09, .7750E-10)
L=21 M=20 ( .2381E-10,-.4540E-09) (-.1258E-09, .8914E-10)
=21 M=21 (-.7324E-10,-.7609E-10) ( .2928E-10,-.9607E-10)
I=22 M= 0 (-.9256E-09, .0000E+00) ( .6713E-09, .0000E+00)
I=22 M= 1 (=.2154E-09,-.5481E-09) (-.3161E-09, .2684E-09)
I=22 M= 2 (-.2018E-09, .6084E-09) (-.3927E-09, .1851E-09)
L=22 M= 3 (-.4362E-09, .6266E-10) (-.3464E-09, .2573E-09)
1=22 M= 4 (-.7640E-10, .8639E-09) ( .7642E-10, .5392E-09)
I=22 M= 5 (-.5399E-10,-.5777E-12) (-.4535E-09, .2175E-09)
L=22 M= 6 ( .2534E-09, .7255E-09) (-.8523E-10,-.4982E-09)
I=22 M= 7 (-.1846E-09,-.1310E-09) (-.6934E-09, .5005E-09)
I=22 M= 8 (-.2506E-09, .1072E-09) (-.5557E-09,-.1269E-09)
I=22 M= 9 ( .6225E-09,-.9797E-09) (-.1732E-09, .2176E-09)
I=22 M=10 (=.3921E-09,-.9921E-09) ( .2204E-09,-.7783E-10)
I=22 M=11 ( .2687E-09,-.7580E-09) ( .3942E-10,-.5356E-09)
=22 M=12 (-.1089E-09, .3523E-09) ( .5056E-09,-.1528E-09)
I=22 M=13 (-.5687E-10, .3998E-09) (-.2504E-09,-.8475E~-09)
L=22 M=14 (-.5268E-09,-.3750E-09) (-.2160E-09,-.2092E-09)
I=22 M=15 ( .1397E-10,-.5186E-09) (-.3886E-10,-.1368E-09)
I=22 M=16 ( .1015E-09,-.5809E-09) (-.4837E-10,-.1669E-09)
L=22 M=17 ( .3985E-09, .5687E-09) ( .5410E-10,-.2129E-09)
L=22 M=18 (-.8589E-10,-.2248E-09) (-.2777E-09, .5531E-09)
L=22 M=19 ( .1459E-09, .1713E-09) ( .9001E-10,-.1979E-10)
I=22 M=20 (-.3777E-09, .3289E-09) (-.3415E-10, .1818E-09)
I=22 M=21 (-.1730E-09,-.2430E-09) (-.1334E-09, .1014E-09)
I=22 M=22 ( .3487E-10,-.7233E-11) ( .4230E-10,-.1019E-09)
I=23 M= 0 (-.1041E-09, .0000E+00) (-.3667E-09, .0000E+00)
I=23 M= 1 (-.5585E-09,—-.4595E-09) (-.4111E-10,-.8985E-10)
1=23 M= 2 (-.1867E-09,-.9640E-09) (-.8626E-10,-.3854E-09)
L=23 M= 3 ( .2077E-10,-.3353E-09) ( .3159E-09, .3965E-09)
L=23 M= 4 (-.2552E-09,-.5811E-09) (-.2149E-09, .6434E-09)
I=23 M= 5 (-.9798E-09, .4405E-09) ( .8895E-10, .1865E-09)
I=23 M= 6 (-.1155E-08,~-.1846E-09) ( .4444E-09, .6875E-09)
I=23 M= 7 ( .4752E-10, .5354E-09) ( .2127E-09, .1702E-09)
I=23 M= 8 (-.5533E-09, .4961E-09) ( .3989E-09, .4886E-09)
1=23 M= 9 ( .2860E-09, .2272E-09) ( .1418E-09,-.7631E-10)
I=23 M=10 (-.1411E-09, .1706E-09) (-.4917E-09,~-.2335E-10)
I=23 M=11 ( .3098E-09,-.5756E-09) (-.2593E-09, .2891E-09)
I=23 M=12 ( .1314E-09, .2007E-10) ( .4214E-09,-.1953E-09)
I=23 M=13 (-.4611E-09,-.3379E-11) ( .3556E-09, .2223E-09)
L=23 M=14 ( .3039E-09,-.1017E-09) (-.3020E-09,-.6962E-09)
I=23 M=15 ( .9509E-10, .1073E-09) ( .5979E-10, .2963E-09)
1=23 M=16 (-.1996E-09, .4956E-10) (-.4980E-09,~-.1594E-10)
L=23 M=17 (-.2670E-09,-.6056E-09) ( .1101E-09,-.3941E-09)
L=23 M=18 ( .5442E-09,-.4023E-10) (-.2966E-09,-.1316E-09)
I=23 M=19 (-.4306E-09,-.2073E-09) (-.2498E-10,-.1646E-09)
L=23 M=20 ( .4852E-09,-.3720E-09) (-.9604E-11, .4148E-10)
L=23 M=21 ( .5548E~-10, .6016E-09) (-.4981E-10, .4891E-10)
L=23 M=22 (-.1776E-09, .2234E-10) (-.1237E-10, .1526E-10)
L=23 M=23 ( .7839E-10, .1453E-09) ( .4364E-10, .3964E-10)



TABLE Cl1. (continued)

FORTE AND PELTIER: PLATE TECTONICS AND LATERAL HETEROGENEITY

Surface Divergence

Radial Vorticity

M=
M=
M=
M=
M=
M=
M=10
M=11
M=12
M=13
M=14
M=15
M=16
M=17
M=18
M=19
M=20
M=21
M=22
M=23
M=24
M=

M=

M=

Voo wNnEO

Voo wNnREOo

M=10
M=11
M=12
M=13
M=14
M=15
M=16
M=17
M=18
M=19
M=20
M=21
M=22
M=23
M=24
M=25

M=

M=10
M=11
M=12
M=13
M=14
M=15
M=16
M=17
M=18
M=19

|
Voo whpRo

M=22
M=23

( .1550E-09, .0000E+00)
(-.8023E-10, .9926E-09)
(-.3363E-09,-.2298E-10)
( .5730E-09,-.2718E-10)
( .7622E-09,-.2742E-09)
( .1067E-08,-.4160E-09)
( .2465E-09,-.5746E-09)
(-.6863E-09,~.2379E-09)
(=.1070E-09,~-.2824E-09)
(-.4738E-09, .1349E-09)
( .3909E-09,-.3978E-09)
(-.4602E-09, .8986E-09)
( .7855E-09,-.1133E-09)
(-.2369E-10, .1287E-08)
(-.1121E-08,-.3215E-10)
( .7592E-10, .4557E-10)
( .3476E-09, .3791E-09)
( .1169E-09, .4451E-09)
(-.2204E-09, .1087E-10)
( .1914E-09, .7486E-11)
(-.1712E-09, .6714E-10)
( .1225E-09,-.5673E-09)
( .2738E-09, .9277E-10)
( .1117E-09,-.3029E-10)
( .1665E-09,-.1902E-10)
( .6643E-09, .0000E+00)
(=.2171E-09,~.6395E-10)
(-.3490E-10, .3933E-09)
(-.1994E-09, .1081E-09)
( .5092E-09, .5519E-09)
( .2737E-09, .7896E-09)
( .9028E-09, .1678E-09)
( .3388E-09, .2133E-09)
( -1911E-09,-.1177E-10)
(-.3572E-09,-.2431E-09)
( .1733E-09,-.2385E-09)
(=.1168E-09,-.1924E-09)
( -5042E-09, .1908E-09)
( .3675E-09,-.2086E-09)
(-.4359E-10, .7051E-09)
(-.9349E-09,-.5102E-09)
( -1500E-09, .4438E-10)
(--1420E-09, .1921E-09)
(-.6833E-10, .8394E-10)
(-.3764E-10, .3713E-09)
(-.2266E-09, .3855E-09)
( -1249E-09, .2425E-09)
(=.1110E-09,-.5422E-10)
(-.8042E-10,-.7009E-11)
( .5906E-10, .2723E-10)
(-.5957E-10, .1488E-10)
( .3886E-09, .0000E+00)
(-.1372E-09,-.1535E-09)
( .1272E-11,-.2080E-09)
(-.4192E-09,-.7552E-09)
( .5666E-10,-.5657E-09)
(-.5020E-10,-.1433E-09)
(-.3190E-09, .5440E-09)
(-.3664E-09, .2764E-09)
( .1825E-09, .3482E-09)
( .2228E-09, .2860E-09)
(-.7586E-09,-.1117E-09)
( .1359E-11,-.3054E-09)
(-.5747E-09, .1396E-09)
( .3458E-09,-.2577E-09)
( .2058E-09, .1010E-09)
( -1677E-09,-.2031E-09)
(-.5734E-10,~-.5689E-09)
( .3495E-09,-.1191E-09)
(-.3157E-09, .7438E-10)
(-.9329E-10,-.1581E~-09)
( .1378E-10,-.1374E-09)
(-.2153E-09, .1848E-09)
( .5065E-10,-.3297E-11)
(-.8488E-12, .7386E-10)

( .8407E-09, .0000E+00)
(-.7470E-09, .8882E-09)
( .4981E-09,-.8589E-10)
(-.1996E-09,-.9706E-10)
( .4200E-09,-.4951E-09)

(-.8237E-10,-.2838E-09)
(-.3890E-09, .3407E-09)
( .3807E-09,-.1261E-09)
( -1181E-09, .4476E-09)
( -1069E-08,-.3520E-09)
(--4144E-11, .1384E-09)
(-.2603E-09,~-.1066E-09)
( .1029E-09, .8313E-09)
( .1308E-09, .2106E-09)
(-.6743E-10, .1248E-09)
(-.1205E-09,-.3815E-09)
( .4649E-09, .4436E-09)
(-.3191E-09, .1145E-10)
( -2950E-09,=.2291E-09)
(-.9827E-10, .1778E-09)
(-.4456E-10,-.3807E-09)
(-.1795E-10,-.4216E~10)
(-.3138E-10,-.7948E-10)
( .6301E-10,-.5694E-10)
( -4228E-10, .5277E-10)
( -7459E-09, .0000E+00)
( .2616E-09,-.9757E-09)
(-.2757E=-09, .4277E-09)
( -7847E-09,-.4929E-09)
( -3451E-09,-.1518E-09)
( .3376E-09,-.8348E-09)
(--7144E-09,-.8837E-09)
(-.2886E-09,-.2984E-09)
(-.3468E-09, .3618E-09)
(-.1840E-09, .5052E-09)
( .6637E-09,-.4187E-09)
( -5009E-09, .2315E-09)
(-.1595E-09,-.8233E-09)
( .7052E-09, .4339E-09)
(-.1786E-09, .2306E-09)
(--1671E-09, .1267E-09)
( .2648E-09,-.5005E-10)
( .2506E-09, .2107E-09)
(-.1072E-09,-.1398E-10)
( .1247E-09,-.4342E-10)
( .2869E-09, .2054E-09)
(-.1839E-09,-.1268E-09)
( -1241E-09,-.4982E-10)
(-.2376E-10, .2863E-11)
(-.6244E-10,-.7651E-11)
( .7644E-11, .4399E-10)
(-.1830E-08, .0000E+00)
( .5913E-09, .1267E-09)
(-.1313E-08,-.5119E-13)
(-.2430E-09, .4968E-10)
( -2425E-09,-.1376E-09)
( .1187E-08, .4555E-09)
( -3830E-10,-.6623E-09)
(-.5924E-09,-.1901E-09)
(-.8457E-10, .3708E-10)
(-.6224E-09, .3067E-09)
( .3450E-09, .2165E-09)
(-.3975E-09, .3084E-09)
( .5824E-09, .4444E-10)
(-.1113E-09,-.1039E-08)
( .3465E-09,-.1875E-09)
(-.1878E-09,-.1093E-09)
( -2424E-09,-.1191E-09)
( .3359E-09, .2827E-10)
(-.6823E-10, .4041E-10)
(-.1176E-10, .2900E-11)
( .9662E-10, .5180E-10)
( .1766E-09,-.5536E-10)
(-.1354E-09, .4748E-11)
( .1243E-09, .8562E-11)
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FORTE AND PELTIER: PLATE TECTONICS AND LATERAL HETEROGENEITY

TABLE Cl1.

(continued)

Surface Divergence

Radial Vorticity

L=26
IL=26
I=26
L=27
L=27
1=27
I=27
=27
I=27
I=27
L=27
I=27
I=27
I=27
L=27
I=27
L=27
I=27
L=27
L=27
L=27
L=27
L=27
I=27
L=27
I=27
I=27
I=27
I=27
=27
=27
1=28
L=28
I=28
L=28
1=28
L=28
=28
L=28
=28
=28
I=28
I=28
I=28
1=28
IL=28
I=28
I=28
I=28
L=28
=28
I=28
L=28
I=28
IL=28
L=28
=28
=28
=28
I=28
I=29
=29
I=29
I=29
I=29
L=29
L=29
L=29
I=29
I=29
I=29
I=2¢9
I=29
I=29
I=29

(-.1312E-09,
( .1336E-10,
(-.7299E-10,
(-.6355E-10,
( .2473E-09,
(-.4513E-09,
(-.3509E-09,
(-.4470E-09,
( .3425E-09,
( .2747E-09,
(-.7721E-10,
(-.5353E-09,
( .6512E-10,
( .1845E-09,
(-.5689E-10,
(-.3281E-09,
(-.3501E-09,
(-.3526E-09,
(-.2276E-09,
(-.1547E-09,
( .3461E-09,
( .9928E-10,
( .1245E-09,
( .3428E-10,
( .2647E-11,
( .4932E-10,
(-.8113E-10,
( .1194E-10,
(-.7567E-10,
(-.3085E-10,
(-.1826E-10,
( .5120E-09,
( .4320E-09,
( .3788E-09,
(-.9421E-10,
(-.4089E-09,
(-.6964E-10,
(-.3326E-10,
( .2805E-09,
( .2115E-10,
(-.1898E-09,
(-.5578E-09,
( .2586E-09,
( .2784E-09,
( .1666E-09,
( .1766E-09,
(-.1005E-09,
(-.5765E-09,
(-.1853E-09,
( .5447E-10,
(-.1606E-09,
(-.3718E-10,
(-.6669E-10,
(-.7415E-10,
( .1606E-09,
(-.3089E-10,
( .1037E-09,
(-.9892E-11,

.1791E-10,

.1966E-10,
-.3137E-09,

.3440E-09,

.4791E-10,

.3671E-10,
-.2159E-09,

.4178E-10,-

(
(
(
(
(
(
(
(
( -1154E-08,
(-.5296E-11,
( .1407E-089,
( .1786E-10,
(-.1184E-09,
(-.6494E-09,
( .1937E-09,
( .2901E-09,
( .5623E-09,

.4082E-10)
-.9169E-10)
.8401E-10)
.0000E+00)
-.5393E-10)
.5639E-09)
-.6987E-10)
-.2883E-11)
-.7098E-09)
-.2740E-09)
-.1640E-09)
.7660E-09)
-.2488E-10)
~.6185E-10)
-.1241E-09)
-.3645E-09)
.9631E-10)
.1366E-09)
.2907E-09)
-.4639E-09)
-.2885E-09)
.5718E-10)
-.6625E-11)
.2935E-11)
-.2794E-09)
.1598E-09)
.1737E-10)
-.5946E~11)
.2910E-11)
-.8517E-10)
.1847E-10)
.0000E+00)
.1136E-09)
-.2375E-09)
.3881E-09)
-.2692E-09)
.6503E-09)
~.1637E-09)
-.2611E-09)
.5281E-11)
.5440E-09)
.2872E-09)
.1174E-09)
-.3709E=09)
-.1343E-09)
-.8976E-10)
.6153E-09)
.3451E-09)
-.1688E-10)
.7515E-11)
.8675E-10)
-.1823E-09)
.1397E-10)
-.3152E-09)
-.6135E-10)
.4928E-12)
-.6554E-10)
.4093E-10)
~.3240E-11)
-.1878E-10)
.0000E+00)
.4568E-09)
.3970E-09)
.2963E-09)
~.1090E=-09)
.5149E-09)
-.2926E-09)
-.1641E-10)
-.5540E-09)
-.3046E-09)
.1023E-09)
-.1144E-09)
-.2389E-10)
~.1561E-10)
.1115E-09)

(-.1818E-10,
(-.4899E-10,
(-.2705E-10,
( .9851E-09,
(-.5149E-09,
( .6752E-09,
(=.9197E-09,
(-.5908E-09,
(-.6271E-09,
( .1031E-08,
(-.5892E-10,
(-.4292E-09,
( -5028E-10,
(-.6560E-09,
( .1891E-09,
(-.4594E-09,
( .1536E-09,
( .1755E-09,
(-.1324E-09,
(=.3796E-09,
( .1427E-09,
( .1659E-09,
(-.8321E-10,
( .8662E-11,
( -8262E-10,
( .1192E-10,
( .8100E-11,
( .1135E-10,
(-.1033E-10,
( .3349E-10,
(-.2320E-10,
( .5989E-09,
( .1493E-09,
( .3881E-09,
( .1384E-09,
(-.1282E-09,
(-.4103E-09,
(-.2343E-09,

.2763E-09, -

.1964E-09,
(-.4219E-09,
(-.1350E-09,
( .4744E-10,
(-.7400E-10,
( .2643E-09,
( .1935E-09,
(-.1567E-09,
(-.1802E-09,
( .6008E-11,

(
( .2735E-09,
(

(-.7905E-11, -

(-.8186E-10,
(-.9801E-10,
( .2743E-10,
(-.1372E-10,
( .7772E-10,
(-.2824E-10,

.3867E-10, -

(

( .-3297E-10,
( .4317E-11,
(-.4485E-09,
( .1009E-08,
(-.2856E-09,
( .1988E-09,
(-.1574E-09,
( .1125E-08,
( .2536E-10,
( .3882E-09,
(-.5481E-10,
( .1919E-09,
( .4480E-09,
( .2303E-09,
(-.1380E-09,
( .1210E-09,
( -2595E-09,

.4335E-10)
-.3612E-10)

.8362E-11)

.0000E+00)

.7912E-09)

.6399E-10)

.7494E-09)

.2617E-10)

.7442E-09)
-.1104E-09)

.1677E-09)
-.5149E-09)

.2978E-10)

.5302E-09)
-.5286E-09)

.8630E-09)
-.4311E-10)
~.4411E-09)
-.3795E-09)
-.7314E-10)
-.1482E-09)
-.1339E-09)

.5978E-11)
-.8441E-10)

.9570E-10)
-.6612E-10)
.8213E-10)
.2466E-11)
.1547E-10)
.4288E-10)
-.1231E-10)
.0000E+00)
.8795E-09)
.4842E-10)
.2981E-09)
.6729E-09)
-.1394E-09)
.1181E-08)
.8888E-10)
.1887E-09)
.4285E-09)
.1679E-09)
.5345E-10)
-.6779E-10)
.6450E-09)
.2534E-09)
.2146E-09)
.1239E-09)
.2393E-09)
.7201E-10)
.1248E-09)
.2640E-10)
.9086E-10)
.1404E-10)
.3523E-10)
.1440E-10)
.3220E-10)
.2253E-10)
.1560E-10)
.1041E-10)
.0000E+00)
.4573E-09)
-.1928E-09)
-.5972E-09)
-.5458E-09)

.3624E-10)
-.2081E-09)
-.3056E-09)

.1894E-09)

.2464E-09)
-.9394E-10)

.3223E-09)
-.4938E-09)

.1859E-09)
-.7498E-10)
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TABLE Cl. (continued)
Surface Divergence Radial Vorticity
I=29 M=15 ( .6485E-10,-.2657E-09) ( .1895E-09, .4685E-09)
1=29 M=16 (-.3297E-10, .2179E-09) ( .2364E-09, .1184E-09)
L=29 M=17 (-.1189E-09,-.4118E-10) ( .1290E-09, .2428E-09)
L=29 M=18 ( .1460E-09, .1827E-09) ( .2285E-09, .2518E-09)
L=29 M=19 (-.1245E-10, .2439E-10) (-.8890E-10, .1486E-09)
L=29 M=20 ( .8773E-11, .1261E-09) (-.3044E-10, .3390E-10)
L=29 M=21 (-.7396E-10, .9710E-10) ( .4596E-10, .1473E-09)
L=29 M=22 (-.2910E-10, .9936E-10) (-.1363E-09,-.4625E-10)
I=29 M=23 (-.1058E-09,-.1910E-09) (-.7623E-10, .1490E-10)
L=29 M=24 (-.5465E-10,-.9075E-10) (-.3439E-10, .3885E-10)
I=29 M=25 (-.939%E-10,-.1047E-10) ( .4707E-11,-.2216E-10)
I=29 M=26 { .8016E-10,-.7929E-10) (-.2185E-10, .3776E-10)
I=29 M=27 ( .4126E-11, .6040E-10) ( -2486E-10, .4347E-11)
L=29 M=28 (-.5563E-11, .7987E-11) (-.4640E-11, .2362E-10)
1=29 M=29 (-.1064E-10,-.1228E-10) ( .9036E-12,-.4668E-12)
L=30 M= 0 ( .9744E-11, .0000E+00) (-.7227E-09, .00O0OE+00)
I=30 M= 1 ( .4217E-10,-.8027E-09) ( .2981E-09, .5995E-09)
I=30 M= 2 ( .5427E-10, .2998E-10) ( .5043E-09, .3473E-10)
I=30 M= 3 (-.6575E-09,-.1540E-10) ( .2558E-10, .3206E-09)
I=30 M= 4 (-.4758E-09, .2033E-09) (-.4401E-09,-.2257E-09)
I=30 M= 5 (-.9289E-09, .7525E-10) (-.6510E-09,-.1158E-09)
I=30 M= 6 (-.8941E-10,-.8098E-12) ( .8540E-09,-.7559E-09)
I=30 M= 7 ( .4812E-09,-.3712E-09) (-.5081E-10,-.6506E-09)
I=30 M= 8 ( .6995E-09, .3933E-09) (-.3484E-09,-.9967E-09)
L=30 M= 9 ( .1652E-09,-.2485E-09) (-.5689E-09,-.5211E-10)
I=30 M=10 ( -4472E-09,-.8019E-10) ( .8030E-10, .1721E=-09)
I=30 M=11 ( .1552E-09,-.1220E-09) ( .2115E-09,-.8102E-10)
I=30 M=12 (-.8714E-10,-.2194E-09) ( -4040E-09,-.7808E-10)
IL=30 M=13 (-.2750E-09,-.1583E-09) (-.2371E-09,-.3141E-09)
I=30 M=14 ( .2336E-09, .1230E-09) ( .1134E-09,-.9486E-11)
L=30 M=15 ( .2868E-09,-.9315E-11) (-.1860E-10,-.4114E-09)
L=30 M=16 (-.2806E-09,-.7328E-10) (-.3170E-09, .2392E-09)
I=30 M=17 (-.3604E-09,-.5249E-09) ( .1223E-09,-.1094E-09)
1=30 M=18 ( .3265E-09,-.3298E-09) ( .3190E-09, .6772E-10)
I=30 M=19 ( .7770E-10, .3170E=-09) ( .1553E-09, .1046E-10)
L=30 M=20 (-.2200E-09,-.9915E-10) (-.1345E-10, .8138E-10)
L=30 M=21 ( .1035E-09, .8217E-11) ( .1154E-09, .2460E-10)
IL=30 M=22 ( .8402E-10, .1073E-09) ( .1516E-09, .9063E-10)
L=30 M=23 ( -1193E-09, .1193E-09) (-.2762E-11, .5590E-11)
IL=30 M=24 ( .9933E-10,-.1401E-11) (-.2324E-10, .6307E-10)
I=30 M=25 (-.2343E-10, .3864E-10) ( .2227E-10, .3523E-10)
I=30 M=26 (=-.5373E-10, .4166E-10) (-.5200E-10,-.2343E-10)
I=30 M=27 ( .7943E-11,-.6027E-10) (-.4255E-11, .5996E-11)
I=30 M=28 ( -.2411E-10, .2030E-10) (-.9260E-11, .1187E-10)
I=30 M=29 ( .1684E-10, .3928E-11) (-.4785E-11, .3973E-11)
I=30 M=30 (-.1472E-11, .1503E-11) ( .1527E-11,-.1821E-12)
I=31 M= 0 ( -2419E-09, .0000E+00) (-.5245E-09, .0O0O0O0OE+00)
I=31 M= 1 ( .3491E-09, .1302E=-09) (-.5704E-09,-.1701E-09)
I=31 M= 2 ( .7663E-09,-.3476E-09) (-.2659E-09, .3389E-09)
I=31 M= 3 ( .5635E-09,-.1741E-09) ( .2176E-09,-.1379E-09)
I=31 M= 4 (-.1314E-09,-.3847E-09) ( .5869E-10, .7057E=-09)
I=31 M= 5 (-.4477E-09,-.3018E-09) (--7964E-09, .2764E-09)
I=31 M= 6 (-.6725E-09,-.1762E-11) (-.3027E-09, .6748E-09)
I=31 M= 7 (-.8715E-09,-.2868E-10) ( .3803E-09, .7237E-09)
I=31 M= 8 (~.4347E-09, .2753E-09) (-.2730E-09,-.4493E-09)
I=31 M= 9 (-.1666E-09, .4836E=-09) ( .2844E-09,-.5679E-09)
I=31 M=10 (-.1141E-10, .7121E-09) (-.7256E-09, .7725E-10)
I=31 M=11 (-.2570E-09, .1038E-09) (-.1514E-09,-.1437E-09)
I=31 M=12 ( -7243E-10, .1121E-09) (-.3362E-10, .3847E-09)
1=31 M=13 (-.3288E-09, .2497E-09) ( .5730E-09, .2788E-10)
I=31 M=14 (-.8701E-10, .1880E=09) (-.3281E-09,-.4451E-10)
1=31 M=15 (-.1731E-09, .2226E-09) ( .3955E-09,-.5385E-09)
I=31 M=16 ( .5253E-10, .1420E-09) (-.1956E-09,-.3475E-10)
I=31 M=17 (-.1647E-09, .2058E=10) (-.4484E-09, .7960E-10)
I=31 M=18 (-.3334E-09,-.6284E-09) (-.1656E-10,-.2265E-09)
L=31 M=19 ( .2783E-09,-.5104E-09) ( .2483E-09, .1708E-10)
I=31 M=20 ( .5769E-10, .1272E=-09) (-.1745E-09,-.1460E-09)
I=31 M=21 (-.1699E-09,-.1918E-09) ( .7745E-11,-.1417E-10)
I=31 M=22 (-.3581E-11,-.1156E-09) ( .5645E-10,-.2669E-10)
I=31 M=23 (-.1122E-09,-.5218E-10) ( .5943E-10,-.5347E-10)
I=31 M=24 ( .7090E-10, .3423E-10) (-.2655E-11, .1115E-10)
L=31 M=25 ( -7926E-10, .3990E-10) ( .3878E-10,-.1031E-10)
I=31 M=26 ( .3047E-10, .1970E-10) ( .3059E-10, .1762E-10)
L=31 M=27 ( .2193E-10, .6117E-10) (-.2107E-10,-.2481E-10)
L=31 M=28 (-.3519E-10,-.7774E-11) ( .3844E-11,-.8960E-12)
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TABLE Cl1.

(continued)

ForTE AND PELTIER: PLATE TECTONICS AND LATERAL HETEROGENEITY

Surface Divergence

Radial Vorticity

L=31 M=29 (-.1019E-11,~.7595E-11) (-.1393E-10,-.4237E-11)
L=31 M=30 ( .3384E-11,-.4904E-11) (-.1016E=11,-.2693E-11)
L=31 M=31 ( .9359E-12,-.3236E-12) ( .5748E-12, .1434E-13)
L=32 M= 0 (-.2473E-09, .0000E+00) ( .6161E-09, .0000E+00)
I=32 M= 1 (-.7069E-10, .1815E-09) (-.7216E-10, .1657E-09)
L=32 M= 2 (-.1499E-09, .2250E-09) (-.1936E-09,-.1975E-09)
L=32 M= 3 ( .5436E-09, .1597E-09) ( .2032E-09, .1086E-09)
L=32 M= 4 ( .4962E-09, .2822E-09) ( .1603E-09,-.2099E-09)
1=32 M= 5 ( .4233E-09,-.4975E-10) ( .4440E-09, .1517E-09)
L=32 M= 6 ( .7024E-10,-.3631E-09) (-.3367E-09, .2406E-09)
L=32 M= 7 ( .2479E-09,-.1373E-09) ( .2849E-09, .5508E-09)
L=32 M= 8 (-.3020E-09,~-.1406E-10) (-.3952E-10, .2054E-09)
1=32 M= 9 (-.2361E-09,-.3083E-09) ( .2342E-09,-.5104E-10)
L=32 M=10 ( .9529E-10, .1139E-09) ( .1751E-09,-.8296E-10)
1=32 M=11 (-.7408E-10, .3706E=-09) (-.1693E-09,-.1356E-09)
1=32 M=12 (-.6044E-09,-.2825E=09) (-.6607E-10,-.1739E-09)
L=32 M=13 ( .6229E-10, .7000E-10) (-.3049E-09, .2705E-09)
L=32 M=14 (-.5154E-09,-.2416E-09) ( .2972E-09, .4015E-10)
L=32 M=15 (-.1488E-09,-.4769E-10) (-.8687E-10, .1532E-10)
L=32 M=16 (-.5305E-10, .2334E-09) ( .1286E-09,-.3012E-09)
L=32 M=17 ( .3431E-10, .3972E-09) ( .9856E-10, .2431E-09)
L=32 M=18 (-.1128E-09, .5292E-10) (-.1548E-09, .2556E-09)
L=32 M=19 (-.2907E-10, .9345E-10) (-.1450E-09,-.1280E-09)
1=32 M=20 (-.7735E-10,~-.1716E-09) ( .1962E-09,-.5934E-10)
1=32 M=21 ( .9300E-10,-.5624E-10) (-.6405E-10,-.3747E-11)
L=32 M=22 ( .3739E-10,-.1918E-09) ( .2071E-10, .3110E-10)
L=32 M=23 ( .2746E-10,-.6977E-10) (-.3063E-10, .5456E-11)
L=32 M=24 (-.1070E-09,~-.9035E-10) (-.1411E-10,-.6839E-10)
L=32 M=25 (-.1003E-10,-.4237E-10) (-.1030E-10,-.2716E-10)
L=32 M=26 ( .2669E-10,-.2101E-10) (-.5058E-12,-.2461E-10)
L=32 M=27 ( .1896E-10,-.3676E-10) ( .1670E-10,-.1576E-10)
L=32 M=28 ( .4466E-10, .9497E-11) ( .1232E-11, .1115E-11)
L=32 M=29 (-.5290E-11, .1824E-10) (-.2444E-11,-.3576E-11)
L=32 M=30 (-.4862E-11,~.4589E-11) (=.7376E-13,~-.4037E-11)
L=32 M=31 (-.8863E-12, .9764E-12) (-.2899E-12,-.1630E-12)
L=32 M=32 ( .2784E-29, .5204E-23) (-.1895E-29, .7880E-23)

Read —.1277E-08 as —.1277 x 1078,
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